OMICS Approaches to Assess Dinoflagellate Responses to Chemical Stressors
Résumé
Dinoflagellates are important primary producers known to biosynthesize metabolites of interest and toxins and form Harmful Algae Blooms (HABs). Water conditions such as nutrient availability, anthropogenic contaminants or pH impact dinoflagellate toxin productions, and HABs' formation remains unclear. In this review, we present the recent contributions of OMICs approaches to the investigation of dinoflagellate responses to water chemical stressors. Transcriptomic and proteomic studies highlight whole-cell strategies to cope with nutrient deficiencies. Metabolomic studies offer a great view of toxin, lipid and sugar productions under stressors. However, the confrontation of different OMICs studies is tedious, as approaches are conducted in different species. As for other model organisms, it would be interesting to use multi-OMIC approaches to build a complete view of dinoflagellate responses to chemical stressors. Overcoming the complex genome of dinoflagellates and increasing their genomic resources is therefore essential to push further. The combination of OMICs studies will provide a much-needed global view of molecular processes, which is essential to optimize the production of dinoflagellate metabolites of interest and identify markers of HABs' formation and toxin production events.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|