
HAL Id: tel-03228270
https://unc.hal.science/tel-03228270v1

Submitted on 18 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining recurrent patterns in a dynamic attributed
Graph. : Application on aquaculture pond monitoring by

satellite images.
Zhi Cheng

To cite this version:
Zhi Cheng. Mining recurrent patterns in a dynamic attributed Graph. : Application on aquaculture
pond monitoring by satellite images.. Image Processing [eess.IV]. Université de la Nouvelle-Calédonie,
2018. English. �NNT : 2018NCAL004�. �tel-03228270�

https://unc.hal.science/tel-03228270v1
https://hal.archives-ouvertes.fr

Année 2018

Ecole Doctorale du Pacifique

Thèse

présenté devant
l’Université de la Nouvelle-Calédonie

par
Zhi Cheng

pour obtenir le diplôme de
docteur spécialité Informatique

MINING RECURRENT PATTERNS IN A DYNAMIC

ATTRIBUTED GRAPH.
Application to aquaculture pond monitoring by satellite

images

Soutenue publiquement le 16 Octobre 2018, devant le jury composé de :

Président

Christophe Menkes, Directeur de Recherche . ENTROPIE / IRD

Rapporteurs

Sandra Bringay, Professeur UMR LIRMM / Université de Montpellier 3 LIRMM

Philippe Fournier-Viger, Professeur Harbin Institute of Technology (Shenzhen)/ Chine

Examinateurs

Hugues Lemonnier, Chercheur. .LEAD / IFREMER

Frédéric Flouvat, Maître de Conférences . ISEA / UNC

Directrice

Nazha Selmaoui-folcher, Maître de Conférences, HDR . ISEA / UNC

ii

Acknowledgements

First and foremost, I would like to express my profound gratitude to my supervisor, Mrs.
Nazha Selmaoui-Folcher, for her tireless help. Although it was difficult for me to make quick
progress at the beginning, with her patient guidance and wise advices, I learned a lot. The
door to her office was always open whenever I ran into a trouble spot or had a question
about my research or writing.

I would like to express my deepest thanks to Mr. Frédéric Flouvat, for his patient
supervision and insightful comments. His guidance helped me in all the time of research and
writing of this thesis.

My sincere thanks go to the members of the team LEAD/IFREMER, Mr. Hugues Lemon-
nier and Mr. Benoît Soulard, for their time and interesting comments. I would like to thank
especially Mrs. Niken Financia GUSMAWATI, a PHD in biology and ecology whom I worked
with during my thesis, for her tremendous Ąeld surveys and her support in specialist Ąelds.

It would also like to express my sincere gratitude to the two reviewers of my thesis, Mrs.
Sandra BRINGAY and Mr. Philippe Fournier-Viger for their time and effort to invariably
improve my manuscript. Their insightful comments and instructive questions help me to
widen my research from various perspectives and inspire more ideas. I would also thank the
member of my thesis committee Mr. Christophe Menkes, for his advices and suggestions.

It is a pleasure to thank my friends and my colleagues in institute of exact and applied
sciences (ISEA): Cyril Francois, Jannai Tokotoko, Nicolas Folcher, Camille Pasquet, Char-
lotte Carré, Yves Le Guevel, Aurélie Boula, Monika Le Mestre, Jordan Prévot, and Pauline
Fey, for the wonderful times we shared. They gave me the necessary distractions from my
research and made my stay in New Caledonia memorable.

Last but not the least, I would like to thank my family, especially my wife, for their
continuous love, support and help throughout my thesis.

iii

iv

Résumé

Dans cette thèse, nous nous sommes intéressés à lŠanalyse de données spatio-temporelles.
Plusieurs algorithmes de fouille de données ont été développés pour extraire des modèles
locaux (appelés aussi "motifs") tels que les motifs séquentiels ou les sous-graphes dynamiques.
Cependant, ces approches souffrent de plusieurs limitations lorsquŠon traite des phénomènes
spatio-temporels complexes. Ces domaines de motifs ne prennent pas en compte toutes
les interactions spatio-temporelles possibles ou ne considèrent que des informations limitées
sur les objets étudiés. Par exemple, les motifs séquentiels se concentrent sur les évolutions
temporelles sans tenir compte des évolutions spatiales. En outre, la plupart des algorithmes
dŠextraction de sous-graphes étudie des graphes dynamiques labélisés. Cependant, ils ne
considèrent quŠun seul attribut par noeud et ignorent les autres caractéristiques des objets
étudiés.

Dans ce manuscrit, nous proposons dŠétudier un graphe dynamique attribué pour fournir
une représentation plus riche des phénomènes spatio-temporels. LŠextraction de motifs dans
des graphes dynamiques attribués est une tâche particulièrement complexe car la structure
du graphe, les noeuds et les attributs associés à chaque noeud peuvent changer dans le
temps. Pour cela, nous avons déĄni un nouveau domaine de motifs appelé motifs récurrents.
Ces motifs, qui sont des séquences de sous-graphes connexes, représentent des évolutions
récurrentes des sous-ensembles dŠattributs associés à des sous-ensembles de noeuds. Pour
extraire ces motifs, nous avons développé un nouvel algorithme, appelé RPMiner, utilisant
une stratégie originale basée sur des intersections successives de composantes connexes ap-
paraissant dans la séquence. Nous avons utilisé plusieurs contraintes pour réduire lŠespace
de recherche et rendre le calcul possible. Une étude expérimentale sur des jeux de données
synthétiques et réels (réseau de co-auteurs DBLP et données de traĄc aérien US Flight)
montre la généricité de notre approche, lŠintérêt des motifs extraits et lŠefficacité de notre
algorithme.

Nous avons effectué également une évaluation poussée de notre approche sur les données
du projet INDESO (suivi de bassins aquacoles en Indonésie par imagerie satellitaire). Pour
cela, un processus dŠextraction de connaissances (KDD) complet a été développé : du pré-
traitement des données à la visualisation et à lŠinterprétation des résultats. Il vise à mieux
comprendre les pratiques des fermiers pour un développement durable de ces ressources
côtières en Indonésie. Ce processus sŠappuie tout dŠabord sur une méthode automatique et
robuste pour extraire les bassins dŠaquacoles à partir dŠimages satellitaires à faible contraste.
Ensuite, il utilise des méthodes dŠextraction de motifs fréquents aĄn de mettre en avant
certaines pratiques des fermiers. Pour cela, nous avons appliqué dans un premier temps un

v

algorithme dŠextraction de motifs séquentiels pour analyser lŠévolution des bassins dans le
temps et comprendre les pratiques des fermiers. En parallèle, nous avons aussi appliqué notre
algorithme RPMiner, qui prend en compte à la fois les dimensions spatiales et temporelles.
Les motifs extraits ont été interprétés par des experts en aquaculture. Les résultats obtenus
ont permis de conĄrmer certaines pratiques et dŠen mettre en avant dŠautres.

vi

Abstract

In this thesis, we are interested in analyzing spatio-temporal data. Numerous algorithms
have been developed to extract local models (also called "patterns") such as sequential pat-
terns or dynamic subgraphs. However, these approaches suffer from several limitations when
dealing with complex spatio-temporal phenomena. These pattern domains do not consider
all possible spatio-temporal interactions or only consider limited information about studied
objects. For example, sequential pattern mining methods focus on temporal evolutions with-
out considering spatial ones. Besides, most of graph mining algorithms study labeled graphs.
They only consider one attribute per vertex instead of all objects characteristics. In our work,
we propose to study dynamic attributed graph, because they provide a richer representation
of spatio-temporal phenomena. Extraction of patterns in dynamic attributed graph is a
particularly complex task because graph structure, vertices and attributes associated with
each vertex can change over time. For this purpose, we deĄne a new pattern domain called
recurrent patterns. These patterns, which are sequences of connected subgraphs, represent
recurrent evolutions of subsets of attributes associated to vertices. To extract these patterns,
we develop a new algorithm, RPMiner, using an original strategy based on successive inter-
sections of connected components. We use several constraints to reduce the search space and
make the computation feasible. Experimental study on both syndetic and two real-world
datasets (DBLP dataset and Domestic US Flight dataset) show the genericity of our ap-
proach, the interest of extracted patterns and the efficiency of our algorithm. We also do an
in-depth experimental evaluation of our approach on the INDESO project data (aquaculture
pond monitoring in Indonesia by satellite images). A complete KDD process has been devel-
oped: from pre-processing of data to visualization and interpretation of results. It aims to
better understand farming practices for sustainable development of these coastal resources
in Indonesia. This process is Ąrstly based on an automatic and robust method to extract
aquaculture ponds from low contrast satellite images. Next, this process extracts frequent
patterns to highlight some farming practices. For this, we have Ąrstly applied a sequen-
tial pattern mining to analyze temporal evolutions of aquaculture ponds and to understand
farming practices. In parallel, we also apply our algorithm, RPMiner, which considers both
spatial and temporal aspects. Extracted patterns were interpreted by aquaculture experts.
Results conĄrm several practices and highlight others.

vii

viii

Contents

List of figures xi

List of algorithms xvii

1 Introduction 1

1 Context . 2

2 Challenges . 3

2.1 Representations of complex spatio-temporal data 3

2.2 Mining complex spatio-temporal data 4

3 Contributions . 5

3.1 Methodological Contributions . 5

3.2 Contributions to aquaculture monitoring 5

4 Organisation of the manuscript . 6

2 State Of The Art 7

1 Sequential pattern mining . 9

1.1 Theoretical framework . 9

1.2 Mining strategies . 10

1.3 Other constraints . 12

2 Pattern mining in dynamic graphs . 13

2.1 High-scoring subgraphs . 15

2.2 Weighted frequent sub-graphs . 15

2.3 Frequent pattern mining from a collection of graph sequences and a
single dynamic graph . 17

2.4 Dynamic plane subgraphs . 19

2.5 Periodic subgraphs . 21

2.6 Coevolving patterns in dynamic graph 22

2.7 Dynamic graphs as Boolean Tensors 23

2.8 Rules to describe the graph evolution 24

3 Pattern mining in dynamic attributed graph 25

3.1 Triggering pattern mining . 26

3.2 Cohesive co-evolution pattern mining 27

ix

3 Contributions 31

1 Mining recurrent patterns in a dynamic attributed graph 33
1.1 Dynamic attributed graph . 34
1.2 A new pattern domain and its constraints 35

2 Algorithm . 39
2.1 Intersection of attributed graphs . 39
2.2 Generation of a size-1 pattern . 42
2.3 Extension of a size-1 pattern . 44
2.4 Algorithm RPMiner . 47
2.5 Algorithm time complexity and completeness 50

3 Experimental results . 52

4 Application to spatio-temporal data analysis 75

1 Problematic . 77
2 Data description . 78
3 IdentiĄcation of aquaculture ponds . 79

3.1 IUC Method . 80
3.2 RGT Method . 81
3.3 EDB Method . 82
3.4 Results . 83

4 Automatic identiĄcation of pond indicators 86
5 Image dataset transformation . 90

5.1 From cartographies to dynamic attributed graphs 90
5.2 From cartographies to sequential data 92

6 Pond evolution by sequential pattern mining 96
7 Pond evolution by graph mining . 105

5 Conclusions and perspectives 123

1 Conclusions . 125
2 Perspectives . 126

2.1 Using other strategies . 126
2.2 Parallel computing . 126
2.3 Mining more global patterns . 127

Bibliography 129

x

List of figures

1.1 Process of the Knowledge Discovery in Databases (KDD) (Fayyad et al., 1996) 2

2.1 The vertical representation of the sequence database shown in Table 2.1 . . . 10
2.2 Example of a labeled dynamic graph . 14
2.3 Example of graph sequence database . 14
2.4 (a) example of edge-evolving network where each edge is scored either 1 or

-1 (solid or dashed, respectively). (b) the heaviest subgraph composed of
¶(A, B), (A, C), (B, E)♢ over the sub-interval [1, 3]. (c) the heaviest subgraph
composed of ¶(A, B), (A, C), (B, E), (D, E)♢ over the sub-interval [1, 5]. . . . 16

2.5 An email communication database (Lee and Yun, 2012) 17
2.6 Graph sequence d and its union graph gu(d) 18
2.7 (a) A graph database DB (b) a frequent relevant induced subgraph subse-

quence of DB . 20
2.8 (a) A graph database DB (b) a frequent relevant induced subgraph subse-

quence of DB . 21
2.9 (a) A relational pattern (b) A coevolving relational motif, (Ahmed and Karypis,

2015a) . 23
2.10 (a) Graph rewriting rules between graph Gi and Gi+1 (b) A transformation

rule that compresses the graph rewriting rules (e.g., a subgraph is removed
from Gi and then added in Gi+1). Notations: Ri, removals of edges between
two graphs Gi and Gi+1, Ai, additions of edges between two graphs Gi and
Gi+1 (Holder and Cook, 2009) . 24

2.11 Example of a pattern with three different occurrences 25
2.12 Example of dynamic attributed graph . 26
2.13 A triggering pattern < ¶a+, b+♢, ¶c−♢ → ¶deg+♢ > whose support equals 2

(orange line and blue line), (Kaytoue et al., 2014) 27
2.14 Example of cohesive co-evolution pattern . 28

3.1 An example of dynamic attributed graph G 34
3.2 Toy example: from values to trends . 35
3.3 Main process of our algorithm . 40
3.4 Example of graph intersection . 41
3.5 Example of a dynamic attributed graph . 42
3.6 Size-1 pattern examples . 45

xi

3.7 Intersections and extensions in parallel of patterns from ¶t1, t2♢ 45
3.8 An example of extension of a size-1 pattern 46
3.9 All solutions beginning from ¶t1, t2♢ . 48
3.10 Example of solutions . 50
3.11 An example of execution of algorithm . 51
3.12 Impact of number of vertices and edges per graph on the execution time

(synthetic data) . 54
3.13 Impact of number of vertices and edges per graph on the number of solutions

(synthetic data) . 54
3.14 Impact of number of vertices and edges per graph on the memory (synthetic

data) . 55
3.15 Impact of number of graphs (timestamps) on the execution time (synthetic

data) . 55
3.16 Impact of number of graphs (timestamps) on the number of solutions (syn-

thetic data) . 56
3.17 Impact of number of graphs (timestamps) on the memory (synthetic data) . . 56
3.18 Impact of number of attributes per vertex on the execution time (synthetic

data) . 57
3.19 Impact of number of attributes per vertex on the number of solutions (syn-

thetic data) . 57
3.20 Impact of number of attributes per vertex on memory (synthetic data) 58
3.21 Impact of mincos on the number of solutions and the execution time (synthetic

data) . 58
3.22 Impact of minsup on the number of solutions and the execution time (syn-

thetic data) . 59
3.23 Impact of minsup on the number of solutions and the execution time (DBLP

dataset) . 60
3.24 Impact of minvol on the number of solutions and the execution time (synthetic

data) . 61
3.25 Impact of minvol on the number of solutions and the execution time (DBLP

dataset) . 61
3.26 Impact of mincom on the number of solutions and the execution time (syn-

thetic data) . 62
3.27 Impact of gap on the number of solutions and the execution time (synthetic

data) . 62
3.28 First pattern extracted from DBLP with the parameters minvol = 2, minsup =

2, gap = 1 mincos = 0 and mincom = 2 . 63
3.29 Second pattern extracted from DBLP with the parameters minvol = 2, minsup =

2, gap = 5 mincos = 0.4 and mincom = 2 . 64
3.30 Third pattern extracted from DBLP with the parameters minvol = 2, minsup =

2, gap = 3 mincos = 0.4 and mincom = 2 . 65
3.31 Forth pattern extracted from DBLP with the parameters minvol = 2, minsup =

2, gap = 3 mincos = 0.4 and mincom = 2 . 67

xii

3.32 First pattern extracted from Domestic US Flight dataset with the parameters
minvol = 2, minsup = 2, gap = 1 mincos = 0.4 and mincom = 2. C: can-
cellation, D: diverted Ćights, DD: the mean delay of departure, DA: the mean
delay of arrival, WD: the ground waiting time departure, WA: the ground
waiting time arrival . 69

3.33 First pattern extracted from Domestic US Flight dataset with the parameters
minvol = 2, minsup = 2, gap = 1 mincos = 0.4 and mincom = 2 69

3.34 The IreneŠ track (from 04/08/2005 to 18/08/2005) (Nilfanion, 2005a) 70

3.35 The KatrinaŠ track (from 23/08/2005 to 31/08/2005) (Nilfanion, 2005b) . . 71

3.36 The OpheliaŠ track (from 06/09/2005 to 17/09/2005) (Nilfanion, 2005c) . . . 71

3.37 Second pattern extracted from Domestic US Flight dataset with the param-
eters minvol = 2, minsup = 2, gap = 1 mincos = 0.4 and mincom = 2.
C: cancellation, D: diverted Ćights, DD: the mean delay of departure, DA:
the mean delay of arrival, WD: the ground waiting time departure, WA: the
ground waiting time arrival . 73

3.38 Second pattern extracted from Domestic US Flight dataset with the parame-
ters minvol = 2, minsup = 2, gap = 1 mincos = 0.4 and mincom = 2 73

4.1 Complete KDD process to study evolutions of aquaculture ponds 78

4.2 Complete process to study evolutions of aquaculture ponds 79

4.3 Aquaculture ponds detection using IUC method 81

4.4 Aquaculture ponds detection using RGT method 82

4.5 Aquaculture ponds detection using EDB method 83

4.6 Aquaculture map obtained using three classiĄcation methods. Upper left im-
age: World View-2 image; Upper right image: RGT; Bottom left image: IUC;
Bottom right image: EDB. Region a:dry active pond; Region b: abandoned
pond with young vegetation; Region c, Region e and Region f: dry abandoned
pond; Region d: watered active pond; Region g: abandoned pond with mature
vegetation . 84

4.7 IdentiĄcation of ponds with Water . 87

4.8 IdentiĄcation of ponds with vegetation . 88

4.9 Original satellite image . 88

4.10 Pond contour detection from Fig. 4.9 . 89

4.11 Detected aerators in Fig. 4.9 . 89

4.12 Bridges of ponds . 90

4.13 Example of ROI . 92

4.14 An example of ROI over 3 consecutive time (from to 2011 to 2013) 93

4.15 First sequential pattern ⟨ {WithActivity}, {WithoutActivity}, {WithoutActivity},

{WithoutActivity}, {WithoutActivity} ⟩ (from 2001 to 2008). Red contours rep-
resent active ponds which became inactive in the 4 consecutive years. A:
12/10/2001, B: 09/03/2002, C: 21/02/2003, D: 27/06/2003, E: 22/09/2007,
F: 19/07/2008 . 97

xiii

4.16 First sequential pattern ⟨ {WithActivity}, {WithoutActivity}, {WithoutActivity}, {With-

outActivity}, {WithoutActivity} ⟩ (from 2009 to 2012). Red contours represent
active ponds which became inactive in the 4 consecutive years. G: 09/07/2009,
H:16/08/2010, I:15/04/2011, J:23/10/2012 . 98

4.17 Cadastre of the last activity detected in ponds between 2001 and 2015 in
Perancak estuary, based on Integrated Pond Activity Indicator (Gusmawati
et al., 2017) . 98

4.18 Second sequential pattern ⟨ {WithActivity}, {WithoutActivity}, {WithActivity} ⟩

(from 2001 to 2008). Red contours represent active ponds became inactive
in the second years and then became active again in the third year. A:
12/10/2001, B: 09/03/2002, C: 21/02/2003, D: 27/06/2003, E: 22/09/2007,
F: 19/07/2008 . 99

4.19 Second sequential pattern ⟨ {WithActivity}, {WithoutActivity}, {WithActivity} ⟩

(from 2009 to 2012). Red contours represent active ponds became inactive
in the second years and then became active again in the third year. G:
09/07/2009, H:16/08/2010, I:15/04/2011, J:23/10/2012 100

4.20 Third sequential pattern ⟨ {WithoutActivity}, {WithoutActivity}, {WithoutActivity},

{WithActivity} ⟩ (from 2001 to 2008). Red contours represent inactive ponds
remained inactive in the two consecutive years and then became active in the
forth year. A: 12/10/2001, B: 09/03/2002, C: 21/02/2003, D: 27/06/2003, E:
22/09/2007, F: 19/07/2008 . 101

4.21 Third sequential pattern ⟨ {WithoutActivity}, {WithoutActivity}, {WithoutActivity},

{WithActivity} ⟩ (from 2009 to 2011). Red contours represent inactive ponds
remained inactive in the two consecutive years and then became active in the
forth year. G: 09/07/2009, H: 16/08/2010, I: 15/04/2011 102

4.22 Forth sequential pattern ⟨ {WithoutActivity, WithVegetation}, {WithActivity, With-

outVegetation} ⟩ (from 2001 to 2008). Red contours represent inactive pond
with vegetation becomes active pond without vegetation in the next year. A:
12/10/2001, B: 09/03/2002, C: 21/02/2003, D: 27/06/2003, E: 22/09/2007,
F: 19/07/2008 . 103

4.23 Forth sequential pattern ⟨ {WithoutActivity, WithVegetation}, {WithActivity, With-

outVegetation} ⟩ (from 2009 to 2014). Red contours represent inactive pond
with vegetation becomes active pond without vegetation in the next year. G:
09/07/2009, H: 16/08/2010, I: 15/04/2011, J: 23/10/2012 K: 10/12/2013, L:
26/03/2014 . 104

4.24 First recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVege-
tation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe:
WithoutAerator . 107

4.25 First recurrent pattern. It depicts a set of 10 adjacent inactive (blue) ponds
became active (red) in the next year. It appears two times, one from 2009 to
2010 and the other from 2012 to 2013 . 107

xiv

4.26 Second recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVege-
tation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe:
WithoutAerator . 109

4.27 Second recurrent pattern. It depicts a set of active ponds (red) became inac-
tive (blue) in the next year. It appears twice, one from 2007 to 2008 and the
other from 2001 to 2012. 109

4.28 Third recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVege-
tation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe:
WithoutAerator . 111

4.29 Third recurrent pattern. It depicts the evolution of 8 ponds, where 7 of 8
adjacent ponds (red) remained active over time while one pond (blue) of this
group remained inactive. This recurrent pattern repeats three times. 111

4.30 Forth recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVege-
tation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe:
WithoutAerator . 113

4.31 Forth recurrent pattern. It depicts the evolution of 6 adjacent ponds (6 in-
active ponds in blue became active in red in the next year). This pattern
appears two times: from 2007 to 2008 and then from 2009 to 2000. 113

4.32 Fifth recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVege-
tation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe:
WithoutAerator . 115

4.33 Fifth recurrent pattern. It depicts a set of 6 adjacent active ponds (red) in
the center region became inactive (blue) in the two following years. It appears
two times, one from 2007 to 2009 and the other from 2013 to 2014. 115

4.34 Sixth recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVege-
tation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe:
WithoutAerator . 116

4.35 Sixth recurrent pattern. It depicts the evolution of a set of 11 adjacent ponds
over four timestamps. Most of these ponds were active (red) Ąrstly became
inactive (blue) in the second year, then became active again (red) in the third
year and Ąnally became inactive (blue) in the forth year. This pattern appears
two times: from 2007 to 2010 and from 2011 to 2014. 116

4.36 Seventh recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVege-
tation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe:
WithoutAerator . 117

xv

4.37 Seventh recurrent pattern. It depicts the evolution of a farm composed of 8
adjacent ponds. Most of the active ponds with aerators (red) had no more
aerators (blue) in the next year. This pattern appears two times: from 10/2001
to 03/2002, from 02/2003 to 06/2003. 118

4.38 Eighth recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVege-
tation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe:
WithoutAerator . 118

4.39 Eighth recurrent pattern. It depicts the evolution of a farm composed of 6
adjacent ponds. These active ponds with aerators (red) had no more aerators
(blue) in the next year. This pattern appears two times: from 10/2001 to
03/2002, from 02/2003 to 06/2003 . 119

4.40 Ninth recurrent pattern. It depicts the evolution activities of 55 adjacent
ponds from 2001 to 2008, where red ponds represent active ponds and blue
ponds represent inactive ponds . 119

4.41 Tenth recurrent pattern. This pattern shows mangrove spread in a farm com-
posed of 53 ponds over 6 consecutive times (from 2001 to 2008), where red
ponds represent the ponds without vegetation and blue ponds represent the
ponds with vegetation . 120

xvi

List of algorithms

1 ExtractIntersect: mining size-1 patterns . 43
2 CommonVerticesEdges: mining candidates of size-1 patterns 43
3 CommonAttributes: mining Ąnal size-1 patterns 44
4 RPMiner : mining recurrent evolutions . 49
5 Generation of synthetic datasets . 52

xvii

xviii

Chapter 1

Introduction

Contents

1 Context . 2

2 Challenges . 3

2.1 Representations of complex spatio-temporal data 3

2.2 Mining complex spatio-temporal data 4

3 Contributions . 5

3.1 Methodological Contributions . 5

3.2 Contributions to aquaculture monitoring 5

4 Organisation of the manuscript . 6

1

2

1. Context

The development of sensor technologies and social media have greatly improved information
collection and made huge amounts of data available. Faced with increasing data, new tech-
nologies are needed to help humans in transforming and resuming automatically these data
to useful knowledge. (Fayyad et al., 1996) presented a process for Knowledge Discovery in
Databases (KDD). This process could be very complicated and steps may vary according
to different nature of data and objective of applications. As shown in Fig. 1.1, the KDD
process is an interactive and iterative multi-steps process. This process is composed of the
following steps: data selection, pre-processing, transformation, data mining, post-processing
and interpretation. The data selection step consists in selecting the sources of informa-
tion. These sources of information could be structured (e.g. transaction, sequential or graph
database) or unstructured data (e.g. books, images or videos). Then, data is preprocessed
and transformed into appropriate data structure for mining. Data mining algorithms are
chosen according to data types and applications. Finally, domain experts interpret solu-
tions. This iterative process is repeated as long as required. We could note that data mining
is just one step of the KDD process. However, it attracts the most attention. So far, many
research efforts have been largely dedicated to deĄne more relevant pattern domains and to
develop scalable algorithms.

Figure 1.1 Ű Process of the Knowledge Discovery in Databases (KDD) (Fayyad et al., 1996)

This work was inspired by the issue of sustainable aquaculture development in Indone-
sia, which was carried out as part of the "INDESO"1 project (Infrastructure Development of
Space Oceanography), in which the laboratory participated through collaboration with the
LEAD/IFREMER team. This collaboration resulted in a co-supervision of N. GusmawatiŠs
thesis defended in July 2017. This project aims to better manage marine and coastal re-
sources in Indonesia. For this purpose, domain experts have conducted many Ąeld surveys
and manual satellite images analysis (Gusmawati et al., 2017) to study this spatio-temporal
data. However, manual analysis and interpretations are very time consuming and can not
scale to large data. Moreover, the vast majority of data cannot be processed by humans in
a manual way, because of structure complexity of data (sequences, trees and graphs etc.)

1We would like to thank the INDESO project for providing the data

3

and large amount of information (e.g. objects, characteristics of objects and relationships
between vertices) that they carried. To this aim, we are interested in developing new data
mining algorithm permitting to study such complex spatio-temporal data.

2. Challenges

2.1 Representations of complex spatio-temporal data

Modeling and understanding spatio-temporal data is a major issue for a wide range of ap-
plications (e.g. understanding and managing aquaculture ponds, soil erosion monitoring,
epidemic monitoring etc.). For example, dengue epidemic is characterized by a set of fac-
tors causing the propagation of the disease across time and space. When the epidemic is
declared in a quarter, the question is to understand how and according to which factors, it
will spread in other quarters. Even if this propagation depends on the direct environment of
a zone (water, mangrove etc.) and a set of circumstances evolving over time (humidity, heat,
precipitation etc), the dynamics of overall propagation is far from being under control if we
consider all the possible interactions between those factors. To deal with such problems,
various methods have been developed to help experts to discover interesting knowledge from
spatio-temporal data. The objective of these methods is to Ąnd spatio-temporal relations
between variables and events without a priori hypothesis. Recently, two data representa-
tions are largely used to study spatio-temporal data. The Ąrst is sequential data, where each
sequence represents the evolution of an individual object. The second is dynamic labeled
graph, where vertices represent objects, edges describe relationships between vertices. Each
vertex is labeled by only one attribute. However, these data representations are limited to
study complex spatio-temporal data, as mentioned by (Moser et al., 2009):

Şoften vertex attributes and edges contain complementary information, i.e. neither the
relationships can be derived from the vertex attributes nor vice versa. In such scenarios the
simultaneous use of both data types promises more meaningful and accurate resultsŞ

Hence, a dynamic attributed graph has been proposed to describe many complicated data
(e.g. spatio-temporal data, biological data or social data) (Desmier et al., 2012; Desmier et

al., 2013; Kaytoue et al., 2014). This graph permits to provide a richer representation of
real-world phenomena where vertices represent objects, edges represent spatial relations or
other types of interactions between vertices and attributes describe the characteristics of
vertices. In this work, edges and attributes may evolve over time while vertices are Ąxed. As
a consequence, this representation is still limited because in many real-world phenomena (s.t.
soil erosion monitoring or aquaculture monitoring), vertices (i.e. studied objects) can also
change (divide, merge, appear, or disappear) over time. A more general data representation
is needed.

4 2. Challenges

2.2 Mining complex spatio-temporal data

Many sequential pattern mining algorithms are developed to study spatio-temporal data. For
example, (Celik et al., 2006; Celik et al., 2008; Celik, 2015) developed an algorithm based
on a generate-test strategy to mine spatio-temporal co-occurrence pattern, i.e. subsets of
two or more different event-types whose instances are often located in spatial and temporal
proximity. It extracts size k spatio-temporal patterns and then uses them to generate size
k + 1 candidates. (Aydin and Angryk, 2016) proposed two Apriori-based algorithms to mine
spatio-temporal event sequences. (Huang et al., 2007) developed a temporal slicing-based
algorithm to mine sequential patterns from spatio-temporal event data sets. It slices Ąrstly
the database according to time and hashes events into slices. Then, they mine sequential
patterns from each slice. (Alatrista-Salas et al., 2012) proposed an algorithm based on
pattern-growth approach to discover spatio-sequential patterns. It permits to analyze the
evolution of areas considering their features and their direct neighboring environment.

Besides, a large amount of graph mining algorithms have been proposed in the literature
and could be used to discover interesting patterns from spatio-temporal data. For example,
(Inokuchi and Washio, 2010b) developed a method to mine frequent patterns called FRISSs
(frequent relevant induced subgraph subsequence) efficiently from labeled graph sequences.
They Ąrst construct union graphs for all graph sequences, then all frequent, induced sub-
graphs are extracted from these union graphs by using a graph mining algorithm based on
depth-Ąrst strategy. In (Ozaki and Ohkawa, 2009), authors developed an algorithm to dis-
cover correlated sequential subgraphs from a sequence of labeled graphs. They developed a
level-wise algorithm CorSSS (based on the Apriori algorithm) based on a tree shaped data
structure that uses the generality ordering among patterns.

However, classical sequence mining algorithms and graph mining algorithms can hardly
be adapted to study a dynamic attributed graph, because it is much more complex compared
with sequential data (do not consider relations between objects) or dynamic labeled graph
(only consider one attribute per vertex).

To the best of our knowledge, few methods have been proposed to mine a dynamic
attributed graph. Mining such graphs is a complex task because every vertex is associated
to a set of attributes (instead of a single label). (Desmier et al., 2012) extracted cohesive
co-evolutions in a dynamic attributed graph. These patterns represent a set of vertices
with the same attributes and a similar neighborhood over a set of timestamps (vertices
and attributes were Ąxed). The authors extended their work in (Desmier et al., 2013) to
integrate constraints on the graph topology and on the attribute values. However, in these
works, all vertex attributes have to follow the same trend over time. Moreover, they donŠt
take temporal evolutions of vertices into account. In (Kaytoue et al., 2014), the authors
deĄne the triggering pattern problem which allows to Ąnd temporal relationships between
the vertex attributes and their topological properties (degree, betweeness, number of cliques
etc.). The authors design an algorithm TRIGAT to mine triggering patterns using a pattern-
growth approach. However, it doesnŠt consider the pattern neighbors neither their evolutions
over time.

5

3. Contributions

In this thesis, my contributions are of two types:

3.1 Methodological Contributions

In our work, we deĄne a new pattern domain in a dynamic attributed graph, more precisely,
a sequence of attributed graph called recurrent pattern. This kind of pattern extracted form
a dynamic attributed graph describes temporal evolutions of connected vertices appearing
in the same way over time. They are in some ways the sequences of connected subgraphs
verifying several constraints. These constraints aim to reduce the search space and extract
meaningful patterns. We propose to use two constraints considering the graph structure, i.e.
the connectivity and the cohesiveness. Temporal continuity enables to target patterns which
describe evolutions around a common core of individuals. Gap allows to study evolutions
in a short term and in a long term. Moreover, frequency is used to calculate the number of
occurrences of patterns.

We also propose a novel algorithm RPMiner to extract recurrent patterns in a dynamic
attributed graph. Different from other strategies based on depth-Ąrst search, breadth-Ąrst
search, successive projections of data or generate-test, our algorithm is based on graph
intersections at different times. Size-i patterns generated by intersecting graphs at times
Ti containing ti are extended by the patterns generated at times Ti+1. Thus, times are
processed incrementally and patterns of different sizes can be generated at each iteration.
The advantage of this approach it to avoid the generation of a large number of patterns which
donŠt verify the constraints and to explore the dynamic attributed graph in an incremental
manner. Our algorithm permits to extract recurrent patterns.

To study the performances of our approach, several experimentations are conducted on
both syndetic and real-world datasets. They demonstrate that our generic algorithm enables
to discover relevant patterns efficiently.

3.2 Contributions to aquaculture monitoring

To study evolutions of aquaculture ponds, we develop a complete KDD process: from pre-
processing to visualization and interpretation of results. Firstly, we propose an automatic
and accurate method to extract aquaculture ponds from very complicated and low contrast
satellite images. Secondly, we develop several methods to identify pondsŠ attributes. Thirdly,
two automatic processes are developed to transform images of aquaculture ponds to sequen-
tial data and a dynamic attributed graph. Fourthly, we apply a sequence mining algorithm
to study temporal evolutions of aquaculture ponds. In parallel, we also apply our algorithm,
RPMiner, which considers both spatial and temporal aspects. Finally, the extracted pat-
terns are visualized on original satellite images and validated by domain experts. Results

6

show that recurrent patterns extracted by our RPMiner algorithm enable domain experts
to identify farms, understand various managements of farmers and study the spread of dis-
ease and mangrove over adjacent ponds. It could give experts a new insight to study such
spatio-temporal phenomena.

4. Organisation of the manuscript

In chapter 2, we review existing approaches to mine patterns in sequence data in section 2.1.
Section 2.2 presents a survey about dynamic labeled graph mining. Finally, we present
related works on dynamic attributed graphs (section 2.3).

Chapter 3 details our contributions from a methodological point of view. In section 3.1,
we deĄne a new pattern domain and some interesting constraints. Then, in section 3.2,
an algorithm is presented and its performances are evaluated using artiĄcial datasets. On
the other hand, experiments on two real world datasets conĄrm the relevance of extracted
patterns.

Chapter 4 presents a detailed application dealing with aquaculture monitoring in In-
donesia. Section 4.1 introduces the problematic. In section 4.2, we describe the aquaculture
farming data. Section 4.3 presents the EDB method to segment satellite images and com-
pares it with two existing segmentation methods. Then, in Section 4.4, we present automatic
methods to identify pond attributes. Section 4.5 details our methods that transform this
time series of satellite images into sequential data and a dynamic attributed graph. Then, we
visualize and interpret the results obtained with sequence mining algorithm (section 4.6) as
well as the results extracted by our algorithm RPMiner (section 4.7). Finally, we conclude
this part and compare these two different data mining methods.

In chapter 5, we conclude this thesis by giving a summary of the thesis and some per-
spectives for future work.

Chapter 2

State Of The Art

Contents

1 Sequential pattern mining . 9

1.1 Theoretical framework . 9

1.2 Mining strategies . 10

1.3 Other constraints . 12

2 Pattern mining in dynamic graphs 13

2.1 High-scoring subgraphs . 15

2.2 Weighted frequent sub-graphs . 15

2.3 Frequent pattern mining from a collection of graph sequences and a
single dynamic graph . 17

2.4 Dynamic plane subgraphs . 19

2.5 Periodic subgraphs . 21

2.6 Coevolving patterns in dynamic graph 22

2.7 Dynamic graphs as Boolean Tensors 23

2.8 Rules to describe the graph evolution 24

3 Pattern mining in dynamic attributed graph 25

3.1 Triggering pattern mining . 26

3.2 Cohesive co-evolution pattern mining 27

7

8

9

1. Sequential pattern mining

1.1 Theoretical framework

Sequential pattern mining methods are widely applied in various areas such as market basket
analysis (Srikant and Agrawal, 1996), bioinformatics (Wang et al., 2007), web usage analysis
(Iváncsy and Vajk, 2006), text analysis (Pokou et al., 2016) and time series of satellite images
(Sanhes et al., 2013; Sanhe, 2014). Discovering frequent subsequences in a set of sequences
has been an important research topic. Let I = ¶i1, i2, ..., in♢ be the set of all items, an
itemset is a subset of I. Without loss of generality, we assume that the items are listed in
alphabetical order. A sequence is an ordered list of itemsets s =< I1, I2, ..., In > such that
Ik ⊆ I (1 ≤ k ≤ n). A sequence is said to be of length k or k-sequence if it contains k items.
A sequence database SDB is a set of sequences SDB =< s1, s2, ..., sm >. Each sequence
has an identiĄer (SIDs) ∈ ¶1, 2, ..., m♢. For example, Table 2.1 shows a sequence database
composed of Ąve sequences with SID ∈ ¶1, 2, 3, 4, 5♢. A sequence sb =< B1, B2, ..., Bm > is
said to contain another sequence sa =< A1, A2, ..., An > if and only if there exists integers 1 ≤
i1 < i2 < ... < in ≤ m such that A1 ⊆ Bi1

, A2 ⊆ Bi2
,..., An ⊆ Bim . For example, in Table

2.1, the sequence < ¶a, c♢, ¶a, b♢, ¶c, f♢, ¶e, f♢ > contains the sequence < ¶c♢, ¶f♢, ¶e♢ > but
not the sequence < ¶c♢, ¶f♢, ¶d♢ >. The support of a sequence sa in a sequence database is
deĄned as the number of sequences containing sa, i.e., sup(sa) = ¶s♣sa ⊆ S ∧ s ∈ SDB♢. In
Table 2.1, the support of the sequence < ¶a, c♢, ¶c, f♢, ¶f♢ > in the database is two because
this sequence is contained in two sequences (sequences 1 and 3).

Table 2.1 Ű A sequence database

SID Sequence

1 < ¶a, c♢, ¶a, b♢, ¶c, f♢, ¶e, f♢ >

2 < ¶a, d♢, ¶a, c♢, ¶d, f♢ >

3 < ¶a, c♢, ¶a, c, e♢, ¶c, e, f♢, ¶f♢ >

4 < ¶c♢, ¶a, d♢, ¶b, e♢, ¶e♢ >

5 < ¶b, d♢, ¶c, f♢ >

Vertical databases are also widely used to represent a sequence database. In a vertical
database, every item is associated with an ID-list. For every item in the database, its ID-
list is a set of < SID (SequenceID), EID (EventID) > which indicates where each item
appears in the sequence database. For example, Fig. 2.1 shows the vertical database of the
sequence database displayed in Table 2.1. The ID-list < SID, EID > of item d indicates
that d appears in the Ąrst and the third itemset of sequence 2 and in the second itemset of
sequence 4.

10 1. Sequential pattern mining

Figure 2.1 Ű The vertical representation of the sequence database shown in Table 2.1

1.2 Mining strategies

Three main approaches were proposed to mine sequential patterns. Some of them use a
breadth-Ąrst search strategy such as GSP (Srikant and Agrawal, 1996) and AprioriALL
(Agrawal and Srikant, 1995). For example, algorithm GSP Ąrst scans the database to gener-
ate frequent 1-sequences and keep them in memory. Then it uses the k-sequences to generate
sequences of length k + 1. This recursive process stops until no patterns could be generated.
However, this strategy has several drawbacks. Firstly, a large number of database scans is
needed to calculate the support of each candidate pattern. Secondly, GSP could generate
nonexistent patterns in the database because candidates are generated just by combining
smaller pattern without accessing the database. Finally, it requires a large amount of mem-
ory because it keeps all frequent k-sequences in memory to generate (k + 1)-length patterns.

Some algorithms use another strategy. They traverse the search space using a depth-Ąrst
search strategy such as SPADE (Zaki, 2001), SPAM (Ayres et al., 2002), CM-Spam (Fournier-
Viger et al., 2014) and CM-Spade (Fournier-Viger et al., 2014). In (Zaki, 2001), authors
develop a depth-Ąrst search algorithm SPADE to discover frequent sequential patterns from
a vertical database. The advantage of using vertical database is that the IDList of any
pattern allows to directly calculate its support without accessing database. Moreover, any
(k +1)-sequence generated by extending a k-sequence with an item i, can be created without
scanning the database (join the ID-list of k-sequence with the ID-list of item i). Thus, only
the intermediate id-lists for two consecutive levels (k-sequences and (k + 1)-sequences) are
maintained in memory. Consequently, Spade is much more efficient than previous breadth-
Ąrst search algorithms.

However, one of the main limit of Spade is that it is not efficient to mine a sequence
database containing long sequences, because IDLists could be very large and as a conse-

State of the art 11

quence, the join operation of IDLists will be very costly. For this purpose, two algorithms
bitSPADE (Aseervatham et al., 2006) and SPAM (Ayres et al., 2002) were proposed based
on a bitmap representation. Each bitmap associated with an item has a bit which indicates
the item position in the dataset. If item i appears in the t − th itemset of sequence j, then
the t − th bit of sequence j for item i is set to one and otherwise to zero. Table 2.2 shows an
example of bitmap representation of the sequence dataset in Table 2.1. The vertical bitmap
of each item is composed of Ąve sections where each section corresponds to a sequence. For
example, < 1, 2 >, i.e., the second itemset of the Ąrst sequence contains items a and b, so the
second bits of the Ąrst sequence for items a and b are set to 1. SPAM and bitSPADE are much
more efficient than SPADE in terms of runtime and memory usage particularly on dense or
long sequences (many bits of items of this data are set to 1). However, both SPAM and
bitSPADE are based on a generate-test strategy, so they inevitably generate a huge amount
of infrequent candidates. To solve this problem, in (Fournier-Viger et al., 2014), authors
develop CM-Spam and CM-Spade algorithms based on the concept of co-occurrence prun-
ing. Firstly, they scan the whole database to generate a structure called the Co-occurrence
MAP (CMAP) composed of all frequent 2-sequences. Then in the search process, for each
considered pattern sa, if its two last items are not frequent 2-sequences, the pattern sa is
infrequent and there is no need to perform the join operation. Thus in practice, CM-Spam
and CM-Spade avoid testing lots of infrequent candidates. CM-Spam (Fournier-Viger et al.,
2014) and CM-Spade (Fournier-Viger et al., 2014) are the most efficient algorithms, they
outperform all current sequence mining algorithms by more than one order of magnitude.

Table 2.2 Ű Bitmap representation of the sequence database shown in Table 2.1

12 1. Sequential pattern mining

Pattern-growth strategies such as PreĄxSpan (Pei et al., 2004) and FreeSpan (Han et al.,
2000) were also proposed. Their approach is based on depth-Ąrst exploitation and database
projections. In (Pei et al., 2004), authors propose a pattern-growth algorithm named PreĄxS-
pan to mine frequent sequential patterns from in an horizontal database. PreĄxSpan scans
Ąrst the database to generate all 1-sequence patterns. Then PreĄxSpan constructs projected
database based on the preĄx of the pattern being extended. PreĄxSpan extends the preĄx
with the items which are frequent in the projected database to form longer sequential pat-
terns. This process continues until no more patterns could be extended. The advantage of
PreĄxSpan is that it generates only patterns occurring in the database. However, a seri-
ous problem of PreĄxSpan and all pattern-growth algorithms is that constructing projected
databases is very time-consuming and could take a huge amount of space in memory.

1.3 Other constraints

These algorithms may Ąnd a huge amount of patterns which is time-consuming and difficult
to analyze. To reduce the number of patterns, three condensed representations have been
studied: closed patterns, maximal patterns and generator sequential patterns. A closed
sequential pattern is a sequential pattern that has no supersequence with the same support
(Huang et al., 2006; Wang et al., 2007; Yan et al., 2003). A maximal sequential pattern is a
sequential pattern such that it is not contained in any other sequential patterns (Lu and Li,
2004; Luo and Chung, 2005; Lin et al., 2007). A generator sequential pattern is a sequential
pattern that have no subsequence having the same support (Lo et al., 2008; Gao et al., 2008;
Yi et al., 2011).

Other constraints have been integrated into the mining process to reduce the search
space, reduce the number of patterns and extract more interesting patterns. For exam-
ple, in (Fournier-Viger et al., 2008), authors extend the algorithms BIDE by integrating
gap constraints (minimum and maximum time interval between two consecutive itemsets
in sequential pattern) and duration constraint (maximum time interval between the Ąrst
itemset and the last itemset of a sequential pattern). Gap constraint can be very useful
because it permits to follow consecutive evolutions or study seasonal evolutions according to
different applications. In (Pei et al., 2007), authors propose several constraints in pattern-
growth algorithms such as item constraint (items that must appear or not in every extracted
pattern) and length constraints (minimum/maximum number of items per pattern). This
constraint helps study the evolution having at least one special item (special items) which is
(are) more important than other items. For example, for a time series of aquaculture ponds
satellite images, experts are especially interested in patterns describing ponds with activ-
ity and without activity because activity is the key factor to study the evolution. Several
extensions of sequential pattern mining problems have also received much attention such
as multi-dimensional sequential pattern mining (Pinto et al., 2001; Songram and Boonjing,
2008), top-k sequential pattern mining (Fournier-Viger et al., 2013), weighted sequential
pattern mining (Yun and Leggett, 2006; Ren et al., 2008), high-utility sequential pattern
mining (Yin et al., 2012; Lan et al., 2014), uncertain sequential pattern mining (Muzammal
and Raman, 2010; Muzammal and Raman, 2011; Zhao et al., 2014) and periodic pattern
mining (Tanbeer et al., 2009; Kiran and Reddy, 2009; Kiran et al., 2016). These extensions

13

permit to model sequential database though different ways and discover more pertinent and
meaningful patterns according to different characteristics of data and for special needs.

2. Pattern mining in dynamic graphs

Graphs are more and more playing a prominent role in modeling complex structures. A large
number of graph mining algorithms have been developed (Aggarwal and Wang, 2010; Cook
and Holder, 2006) for various application domains such as remote sensing, social networks,
epidemiology and bioinformatics (Berlingerio et al., 2011; Prakash et al., 2014; Sanhes et al.,
2013). Various types of graphs have been studied in the literature such as static graphs
(Inokuchi et al., 2000; Huan et al., 2003; Kuramochi and Karypis, 2004; Deshpande et al.,
2005), multidimensional graphs (Berlingerio et al., 2011) and attributed graphs (Moser et

al., 2009; Khan et al., 2010; Pasquier et al., 2013). Recently, dynamic labeled graphs have
received much attention (Ahmed and Karypis, 2015a; Berlingerio et al., 2009; Borgwardt
et al., 2006; Lahiri and Berger-Wolf, 2010; Bogdanov et al., 2011; Inokuchi and Washio,
2010b; Ozaki and Ohkawa, 2009). However, to our best knowledge, few methods have been
proposed to mine a dynamic attributed graph which provides a richer information.

In this chapter, we present related works on dynamic graph. It can be categorized into two
models, i.e., a single dynamic graph (network) and a graph sequence database (a collection
of graph sequences).

A single dynamic graph (network) is a sequence of labeled graphs in which vertices
represent entities, edges denote the relationships or connections between entities (Ozaki and
Ohkawa, 2009). Vertices and edges could appear and disappear over time. Fig. 2.2 shows an
example of labeled dynamic graph. It is a sequence of graphs G = ⟨Gt1

, Gt2
, ..., Gtmax⟩ which

represents the evolution of a graph over a set of time T = ¶t1, . . . , tmax♢. For each time t ∈ T ,
Gt = (Vt, Et, λt) is a graph where Vt ⊆ V is the set of vertices at time t, Et ⊆ Vt × Vt is the
set of edges at time t, with a labeling function λ: V ∪E 7→ ∑

, assigning to vertices and edges
labels from an alphabet

∑

. These labels represent properties, and for simplicity we assume
that they do not change with time. A dynamic graph is used as a general representation for
many real world applications. For example, Fig. 2.2 could represent a social network, where
each vertex is a person, edges describe interactions between humans. Vertices increase or
decrease when a person joins or leaves the community in the social network, edges evolve
when relationships are created/deleted.

A graph sequence database is composed of a collection of graph sequences (Inokuchi and
Washio, 2008). Fig. 2.3 depicts a database of two graph sequences d1 and d2 where d1 =< g

(1)
1

g
(2)
1 g

(3)
1 g(4) > and d1 =< g

(1)
2 , g

(2)
2 , g

(3)
2 , g

(4)
2 >. Each graph sequence is an ordered list of

labeled graphs i.e. d =< g(1), g(2), ... , g(tmax) >. The total number of vertices in the graph
sequence

∑l
j=1 ♣V (g(j))♣ is the size of the graph sequence and each vertex v in g(j) has an

unique ID. Many real world applications can generate such database. For example, an email

14 2. Pattern mining in dynamic graphs

Figure 2.2 Ű Example of a labeled dynamic graph

communication network can be represented by daily/weekly graph sequence data, where
vertices are persons assigned by a unique ID and edge represents personal communication
by email. The total number of days/weeks is the number of sequences.

Figure 2.3 Ű Example of graph sequence database

Mining a single dynamic graph and mining a collection of graph sequences have been
studied separately. For a single dynamic graph, the frequency of a pattern is the number
of its occurrences (i.e., embeddings) in this graph. While in a graph sequence database, the
frequency of a pattern is deĄned as the number of graph sequences that the pattern occurs
in. Algorithms developed to mine a graph sequence database is not adapted to mine a single

State of the art 15

dynamic graph, while the latter algorithms can be used to study a graph sequence database.
Many different methods have been designed to study dynamic labeled graph. Some stud-

ies focus on extracting high-scoring subgraphs, i.e. highest-scoring (based on edge weights)
connected subgraph over a time sub-interval (Bogdanov et al., 2011). Some studies focus
on mining frequent subgraphs (Jiang et al., 2010), i.e., subgraphs whose support are greater
than a user deĄned threshold. Some studies aim at discovering the evolution of subgraphs
through time (Holder and Cook, 2009), i.e. how the subgraphs structure change between
consecutive timestamps. Some other studies discover δ-contiguous closed 3-cliques patterns
(Cerf et al., 2009b), i.e. maximal sets of densely connected vertices that run along some
nearly contiguous timestamped graphs.

2.1 High-scoring subgraphs

In (Bogdanov et al., 2011), authors deĄne the problem of extracting high-scoring connected
temporal subgraphs (HDS). The score is the sum of edge weights and edge weights evolve
through time, i.e., it is a dynamic graph with numeric edge labels. Approaches for Ąnding
high-scoring subgraphs have various applications. For example, ENRON is a dataset (Dies-
ner et al., 2005) where vertices are employees. An edge exists if there is at least one message
between two personal accounts and edge weight is the number of messages. High-scoring
subgraphs could represent communication workĆow. Given an edge-weighted evolving net-
work G = ⟨Gt1

, Gt2
, ..., Gtmax⟩ with λ = (λ1, ..., λtmax) s.t. λi : E → ¶−1, 1♢. A temporal

subgraph is a pair (G, [i, j]) where G(V, E, λ) is a connected graph and [i, j] is a sub-interval
of [1, tmax].

The HDS problem is then to extract the complete set of temporal sub-graphs that max-
imizes the score, i.e., the sum of all edge-weights of the pattern. For example, as shown in
Fig. 2.4 (a), an edge-evolving network could represent a traffic Ćow on a freeway network
over time (Bickel et al., 2003). Solid lines (edges with score 1) represent low occupancy,
i.e., traffic Ćows freely, and dashed lines (edges with score -1) signify that Ćow and velocity
decreases. At the beginning, freeways between districts (A, B), (A, C) and (B, E) are at
low occupancy, then freeway (A, C) remains at low occupancy and terminates at t5. The
heaviest dynamic subgraph over the sub-interval [1, 3] is the set of edges ¶(A, B), (A, C),
(B, E)♢ with a score of 5 and the heaviest dynamic subgraph over the sub-interval [1, 5] is
the set of edges ¶(A, B), (A, C), (B, E), (D, E)♢ with a score of 8.

The authors develop an algorithm based on Ąlter-and-verify strategy to extract heaviest
dynamic subgraph that scales to large networks with long evolution extent. It is very efficient
by using tight upper bounds to prune irrelevant time intervals instead of enumerating all
possible intervals.

2.2 Weighted frequent sub-graphs

In (Jiang et al., 2010), authors aim to extract weighted frequent subgraphs from a single
sequence of edge weighted graphs. For many applications, a frequent subgraph with a higher
edge weight value is more meaningful than others with the same support threshold. A se-
quence of edge weighted graphs G is deĄned as G = ⟨Gt1

, Gt2
, ..., Gtmax⟩. Gt = (Vt, Et, λt) is

16 2. Pattern mining in dynamic graphs

Figure 2.4 Ű (a) example of edge-evolving network where each edge is scored either 1 or
-1 (solid or dashed, respectively). (b) the heaviest subgraph composed of ¶(A, B), (A, C),
(B, E)♢ over the sub-interval [1, 3]. (c) the heaviest subgraph composed of ¶(A, B), (A, C),
(B, E), (D, E)♢ over the sub-interval [1, 5].

a labeled graph where Vt is a set of vertices, Et is a set of edges and λt is a function that asso-
ciates edges with a set of numeric labels. The authors propose three edge weighting schemes
(Average Total Weighting, Affinity Weighting and Utility Based Weighting) and incorporate
three strategies into three weighted variations of the gSpan algorithm (ATW-gSpan, AW-
gSpan, and UBW-gSpan) to mine weighted frequent subgraphs. Instead of searching graphs
and testing isomorphism, gSpan (Yan and Han, 2002) constructs canonical DFS (depth Ąrst
search) code for each graph. Based on these codes, gSpan adopts the depth-Ąrst search
strategy to extract frequent subgraphs efficiently. Compared with the gSpan algorithm,
these three approaches are mainly designed to reduce search space by discovering the most
relevant sub-graphs. The proposed algorithms are more efficient than gSpan in terms of
runtime and memory use.

The frequent subgraphs extracted by previous methods consider only supports or weights.
However, such patterns can be meaningless if it has a low affinity value, i.e. internal elements
(edges) of the pattern are scarcely correlated even though it satisĄes minimum support and
weight thresholds at the same time. In other word, previous algorithms (Günnemann and
Seidl, 2010; Jiang et al., 2010; Ozaki and Etoh, 2011) could consume much time and memory
in conducting graph isomorphic test to Ąnd useless sub-graphs (a NP-hard problem).

As an example, Fig. 2.5 illustrates an email communication database, the table on the
right shows edge supports (i.e. the number of email communications) and edge attributes
represent corresponding weights. If we do not apply affinity measures (support affinity and
weight affinity), all the super graphs extracted from the graph are valid. However, if we
consider affinity conditions, some needless patterns will not be generated. As shown in the

State of the art 17

Figure 2.5 Ű An email communication database (Lee and Yun, 2012)

table of Fig. 2.5, the edges (A,B), (A,D) and (B,D) have lower support value than (B,C)
and (C,D). Thus, the former edges have a different tendency compared with the latter edges.
For example, A-B-D (cyclic) often represents personal communications while B-C-D (path)
could be spam attacks or advertisements because the supports (number of emails) of edges
(B,C) and (C,D) are quite high. Thus, only A-B-D and B-C-D are valid patterns. But if
we consider weight affinity in the graph, A-B-D (cyclic) becomes invalid because the weight
value of (A,D) is much lower than (A,B) and (B,D) and thus this pattern has a low weight
affinity value. As a consequence, to avoid such patterns, (Lee and Yun, 2012) deĄne two
affinity measures (support affinity and weight affinity). Given a sub-graph G, the support
affinity of G is the ratio of the support of G in the database to the highest support of edges
of G. ItŠs weight affinity is the ratio of the minimum edge weight in G to the maximum one.

Given an edge weighted graph, the mining problem consists in extracting all sub-graphs
whose support affinities and weight affinities are both greater or equal to two minimum
affinities thresholds. The authors propose an efficient depth-Ąrst search algorithm MWSA
to extract valid sub-graphs by pruning useless patterns. By using the affinity measures and
their anti-monotone properties, MWSA permits to prune patterns efficiently.

2.3 Frequent pattern mining from a collection of graph sequences and a

single dynamic graph

A graph sequence database is composed of a collection of labeled graph sequences < sid, d >,
where sid is the ID of a graph sequence and d is a graph sequence. Each graph sequence
is an ordered list of labeled graphs i.e., d =< g(1), g(2), ... , g(tmax) >. Many real world
applications can generate such databases. For example, an email communication network
can be represented by daily/weekly graph sequence data, where vertices are persons identiĄed
by a unique ID and edges represent personal communications by email. The total number
of days/weeks is the number of sequences.

In (Inokuchi and Washio, 2008), the authors propose a method GTRACE (Graph Trans-
formation sequence mining) based on a depth-Ąrst strategy, to mine frequent sequences of
graphs from a graph sequence database. They deĄne transformation rules that represent
graphs under the assumption that the change over sequential graphs is gradual. However,
GTRACE becomes intractable for Enron graph sequences containing more than 7 graphs and

18 2. Pattern mining in dynamic graphs

100 unique vertices. To solve this issue, the same authors propose a more efficient method
(Inokuchi and Washio, 2010a) to Ąnd frequent patterns called FTSs (Frequent Transforma-
tion Subsequences) from longer (more graphs) and larger (more vertices) graph sequences.
Given a graph sequence d =< g(1) g(2) ... g(tmax) >, the difference between two consecutive
graphs is a sequence of small changes s(j) = < g(j,1), ..., g(j,mi) > called intrastate. It is a
set of transformations between gi and gi+1. Each transformation represents insertion, dele-
tion or relabeling of a vertex or an edge. Then, frequent patterns are extracted based on
transformation rules.

However, change between two consecutive graphs gi and gi+1 has to be gradual. To over-
come this limit, the authors (Inokuchi and Washio, 2010b) improve their method to mine
frequent patterns relevant induced subgraph subsequences from graph sequences containing
long sequences and large graphs efficiently. They Ąrst construct a union graph (a graph com-
posed of all vertices and edges of these graphs) for each graph sequence. Then all frequent
induced subgraphs are extracted from these union graphs by using a conventional graph min-
ing algorithm. A subgraph g′ of g is an induced graph if and only if two vertices in V (g′) are
adjacent in both g′ and g. A subgraph sequence d =< g(1), g(2), ... , g(l) > is called relevant
if the union graph gu(d) of d is a connected graph, where gu(d) = (V (gu(d)), E(gu(d))) is
deĄned as follows:

V (gu(d)) =
⋃

j=1,...,l¶id(v)♣v ∈ V (g(j))♢
E(gu(d) =

⋃

j=1,...,l¶(id(v), id(v′))♣(v, v′) ∈ E(g(j))♢
For example, as shown in Fig. 2.6 (a), the vertices with unique IDs 1 and 4 are not

connected directly in any of the three graphs. However, they are connected to the vertex 2
in the second graph and the Ąrst graph respectively. So vertices 1 and 4 are relevant via the
vertex 3. Given a graph sequence database and a minimum support threshold, the aim is
thus to extract all frequent patterns whose union graphs are connected.

Figure 2.6 Ű Graph sequence d and its union graph gu(d)

The authors (Inokuchi and Washio, 2010b) propose FRISSMiner algorithm based on
depth-Ąrst search strategy to mine Frequent Relevant, and Induced Subgraph Subsequences.
FRISSMiner is more efficient than GTRACE in terms of runtime and memory usage because
it only generates patterns whose union graphs are connected and do not verify the connec-

State of the art 19

tivity of the vertices in each graph. It allows to study graph sequences containing longer
sequences (20 graphs) and larger graphs (5000 unique vertices) compared with (Inokuchi
and Washio, 2008). However, relevant patterns are not actually "relevant" for many applica-
tions because extracted patterns are not necessarily connected graphs. For example, Fig. 2.7
(a) could represent a spatio-temporal database dealing with aquaculture monitoring. It is
composed of two sequences where each vertex is assigned to an aquaculture pond and each
edge represents the spatial relationship between ponds. One label of the vertex-labels set
{Active, Semiactive, Abandoned} is assigned to each pond. It is interesting to understand
how a set of adjacent ponds evolve over time, because adjacent ponds always interact with
each other. However, a relevant subgraph subsequence pattern may not be interesting if
only union graphs are connected while subgraphs are not connected. Fig. 2.7 (b) shows a
frequent relevant and induced subgraph subsequence extracted from the database. Although
the union graphs of d1 and d2 are both connected, the edge (1,2) is not connected in g

(2)
1 ,

g
(3)
1 and g

(2)
2 and the edge (2,4) is not connected in g

(1)
1 , g

(3)
1 and g

(1)
2 .

In (Ozaki and Ohkawa, 2009), the authors develop an algorithm based on a levelwise
strategy to discover correlated sequential subgraphs from a single sequence of labeled graphs
i.e. frequent sequences of subgraphs whose components are correlated with each other. They
propose a correlation criterion named (m, θ, k). m represents the size of subsequences, θ is
the minimum threshold for the correlation (Tan et al., 2002) which aims to verify a strong
relationship between two components of a pattern and k is a positive integer accessing
the maximum number of exceptional subgraphs (uncorrelated subgraph in the pattern with
respect to the minimum correlation threshold θ).

Given a graph sequence G, a minimum support threshold σ (1/♣G♣ ≤ σ ≤ 1), a minimum
correlation threshold θ (0 ≤ θ ≤ 1), a size of subgraphs of pattern m ≥ 1 and a maximum
exceptional subgraphs allowed k ≥ 1, then the problem is to enumerate the complete set
of successive correlated sequential subgraphs. The authors develop a levelwise algorithm
CorSSS using hash tables to store sets of preĄx and postĄx trees.

In order to discover more correlated patterns, several measures are proposed in (Yun,
2007), such as sequential support-conĄdence (s-conĄdence) and sequential weight-conĄdence
(w-conĄdence). S-conĄdence is the ratio of the minimum support of items within a given
pattern to the maximum support of items within this pattern. It describes the s-affinity
among items within pattern. A sequential pattern is a sequential s-affinity pattern if its s-
conĄdence is no less than a minimum s-conĄdence. W-conĄdence is the ratio of the minimum
weight of items within a given pattern to the maximum weight of items within this pattern.
It reĆects the w-affinity among items within sequence. A sequential pattern is a sequential
w-affinity pattern if its w-conĄdence is no less than the minimum weight conĄdence. The
authors (Yun, 2007) develop a new algorithm based on successive projections to extract
weighted sequential patterns with similar support and/or weight. These measures give a
balance between support measure and weight measure.

2.4 Dynamic plane subgraphs

In (Prado et al., 2013), the authors are interested in studying dynamic plane graphs where
each graph is a single sequence of labeled ordered graph constructed by deĄning the circular

20 2. Pattern mining in dynamic graphs

Figure 2.7 Ű (a) A graph database DB (b) a frequent relevant induced subgraph subsequence
of DB

ordered list of neighbours of a vertex v. They aim to discover spatio-temporal pattern in
such dynamic plane graphs. Given a dynamic graph G = ⟨G1, ..., Gtmax⟩ in which each
vertex is related to spatial coordinates (x, y) and a plane graph P, the set of occurrences
of P in G is deĄned as Occ(P) = ¶(i, f)♣f is an occurrence of P in Gi♢, where P is a plane
subgraph isomorphism to Gi. Two occurrences are close if their spatial distance is lower
than a threshold ϵ and their temporal distance is lower than a threshold τ . The connected
component of occurrences of P is then deĄned as a spatiotemporal pattern based on P , where
two occurrences are connected if they are close. As an example, in video applications, each
video frame can be regarded as a plane graph in which each vertex is an object (a segmented
region of the frame) associated with spatial information such as the barycenter of the object,
and edges represent spatial relationships between vertices. Finding spatio-temporal patterns
permit to track a given object in a video over time. Fig. 2.8 shows a video of four frames.
As we can see, occurrences of 1, 2 and 2, 3 are spatially and temporally close, i.e. they

State of the art 21

appear in consecutive frames at similar positions. So a spatio-temporal pattern ¶1, 2, 3♢ is
extracted. Similarity, ¶5, 6, 7♢ and ¶4♢ are also spatio-temporal patterns. However, ¶1, 5♢ is
not a spatio-temporal pattern as the occurrence of 1 and 5 are quite far. The problem is then
deĄned as extracting a complete set of spatio-temporal patterns with a frequency greater
than a user threshold. For this purpose, the authors develop the algorithm DyPlagram based
on a depth-Ąrst search strategy.

Figure 2.8 Ű (a) A graph database DB (b) a frequent relevant induced subgraph subsequence
of DB

Compared with other mining approaches aimed at Ąnding subclasses of graphs (Yan
and Han, 2002; Inokuchi et al., 2000; Nijssen and Kok, 2004), DyPlagram is more efficient
in terms of time and memory for the following reasons. Firstly, Ąnding subgraphs in a
dynamic graph is a NP-complete problem while subgraph isomorphism tests for plane graphs
is polynomial (Damiand et al., 2009). Secondly, other algorithms extend a pattern by a single
edge at a time, which generates huge amounts of extensions, while proposed patterns can
only be extended with faces (a connected region of the plane which is bounded by a circuit of
edges). In (Diot et al., 2012), the authors extend their work by introducing additional spatio-
temporal constraints and propose the algorithm DyPlagram_ST that takes in to account new
constraints.

2.5 Periodic subgraphs

Many interesting patterns occurring regularly are often infrequent. To extract such regular
behaviors, (Lahiri and Berger-Wolf, 2008) consider the problem of mining periodic subgraphs
in dynamic labeled graph. Mining periodic subgraph patterns is interesting in many domains.
For instance, in a dynamic graph which represents movements and interactions of animals,
a pattern could describe their periodic behaviors such as seasonal association.

Given a sequence of labeled graphs G = ⟨Gt1
, Gt2

, ..., Gtmax⟩ over a set of time T =
¶t1, . . . , tmax♢. A periodic subgraph embedding (PSE) of a subgraph C = (V, E, λ) in G is a
maximal, ordered set of timesteps T where C is a subgraph of Gt and the gap between every
two consecutive elements ti and ti+1 in T is constant. Each periodic subgraph embedding
(PSE) C = (V, E, λ) is associated with a triplet (b, p, s) where b is the Ąrst timestep, p is the
period and s is the support of PSE. The aim is then to mine the complete set of closed periodic
subgraphs whose support is greater than a user deĄned threshold. The authors propose a

22 2. Pattern mining in dynamic graphs

single pass, polynomial time and space algorithm called PSEMiner to Ąnd periodic patterns.
However, this algorithm is not efficient because the pattern tree is browsed in a breadth-Ąrst
manner at every timestep. Thus, many unessential tree nodes are generated.

To solve this problem, (Apostolico et al., 2011) propose a more efficient algorithm List-
Miner, to mine periodic subgraph patterns. To avoid browsing the pattern tree, input graphs
are partitioned by periodic value p of the form Gp

x = ¶Gx, Gx+p, ..., Gx+np♢, x = 1, 2, ..., p−1.
They create p lists where each list node represents a unique periodic pattern. It allows to
use previously computed intersections of graphs to compute following ones. This algorithm
is more efficient in terms of execution time. However, it saves many redundant common
interactions because new nodes are generated whenever interaction is changed within the
graph over time. In summary, these two methods PSEMiner and ListMiner store separate
graphs as long as one entity of a large graph is modiĄed over time.

In (Halder et al., 2017), the authors propose a super-graph (common vertices and edges
of graphs) based periodic patterns mining algorithm, named SPPMiner, which improves the
existing technics in both execution time and memory usage. Firstly, at each time interval t,
an empty super-graph is initialized. Then it is updated with current graph entities (vertices
and edges). Once entities stop to be periodic, they are removed from the super-graph.
This super-graph becomes a periodic entity if it satisĄes the minimum support threshold.
Compared with previous algorithms, the main advantage of this approach is that only one
maximal common pattern calculation is needed for each time interval p. Moreover, all
common and uncommon pattern entities (vertices and edges) in dynamic graphs are stored
only once.

2.6 Coevolving patterns in dynamic graph

In (Ahmed and Karypis, 2015a), authors deĄne a new class of dynamic labeled graph patterns
named coevolving relational motifs (CRMs). A relational motif is a subgraph that appears
frequently in a single graph or several graphs. As shown in Fig. 2.9 (a), the frequent subgraph
composed of the three shaded vertices, connected by labeled edges a, a and b, is a relational
motif occurring four times (two times in G1 and once in G2 and G3 respectively). Coevolving
relational motifs (CRMs) are relational patterns that change in a consistent way (have at
least one edge in common) through time. Fig. 2.9 (b) depicts an example of CRM. The Ąrst
relational motif (M1) composed of two shaded vertices and a labeled edge AE/IE/FG occurs
four times in the Ąrst graph for 1990. Then three of these four motifs evolve in the same
way by joining an additional vertex in the second relational motif M2 in 2000. Finally, two
of these three motifs evolve to M3 composed of four shaded vertices and Ąve labeled edges
AE, RM, PE, PM and ME/FG in 2005. The sequence < M1, M2, M3 > is a CRM. The
authors develop a depth-Ąrst search algorithm, named CRMminer, which allows to extract
recurring sets of vertices whose relations (edges) change in a consistent way over time from
a single dynamic labeled graph.

In (Ahmed and Karypis, 2015b), authors improved CRMminer by deĄning a new class
of patterns, referred as coevolving induced relational motifs (CIRMs). More formally, a
CIRM of length m is a tuple ¶N, < M1, ..., Mm >♢, where N is a set of vertices and each
Mj = (Vj , Ej) is an induced relational motif. A CIRM has to satisfy the following constraints:

State of the art 23

Figure 2.9 Ű (a) A relational pattern (b) A coevolving relational motif, (Ahmed and Karypis,
2015a)

(1) it occurs at least ϕ times, (2) each occurrence uses a non-identical set of nodes, (3) Mj

̸= Mj+1, and (4) ♣Nj ♣ ≥ β♣N ♣ where 0 < β ≤ 1.
Given a dynamic network G containing T timesteps, a minimum support ϕ (1 ≤ ϕ), a

minimum number of vertices kmin per CIRM and a minimum number of motifs mmin per
CIRM, the problem is to enumerate all frequent coevolving induced relational motifs. To
this aim, the authors develop the algorithm, CIRMiner, to extract all frequent coevolving
induced relational motifs. CIRMiner is based on a depth-Ąrst search strategy. It is much more
efficient than CRMminer because it generates only a small group (i.e., induced patterns) of
all frequent CRMs. It results in a noticeable reduction in number of patterns and execution
time.

2.7 Dynamic graphs as Boolean Tensors

Discovering closed patterns in ternary relations from a collection of graph sequences has
received much attention. It provides insight into many real world applications. For instance,
in a bicycle rental system, n-ary relation patterns permit to understand rider behaviors (rid-
ersŠ popular and active stations, popular cycling routes over different periods etc.). Three
approaches were proposed to mine this type of patterns, namely CubeMiner (Ji et al., 2006),
Trias (Jaschke et al., 2006), and Data-Peeler (Cerf et al., 2008) (Cerf et al., 2009a). Data-
Peeler follows a depth-Ąrst exploration approach. It is more general than the two former
algorithms because only Data-Peeler can deal with n-ary relations and mine patterns that

24 2. Pattern mining in dynamic graphs

satisfy a large class of piecewise anti-monotonic constraints. In (Cerf et al., 2009b), the
authors deĄne Data-Peeler algorithm to discover δ-contiguous closed 3-cliques patterns, i.e.
maximal sets of vertices densely connected that run along some nearly contiguous times-
tamped graphs. Such a pattern respects three constraints. (1) it is a clique (every two
distinct vertices in the clique are adjacent), (2) it is almost contiguous (the clique is re-
spected on almost consecutive timestamps) and (3) it is closed (the pattern is maximal, any
subset of the pattern violates the connection constraint). More formally, we set at,v1,v2 = 1,
if there exists an edge between vertex v1 and vertex v2 at time t.

A δ-contiguous closed 3-clique is a triset P = (T, V 1, V 2) where T is a set of timestamps,
V is a set of vertices such that (1) P is connected and symmetric, i.e. ∀(t, v1, v2) ∈ P ,
at,v1,v2 = 1 and at,v2,v1 = 1; (2) P is δ-contiguous, i.e., ∀t ∈ T, ∃t′ ∈ T s.t. ♣t − t′♣ < δ; (3) P

is closed, i.e., ̸ ∃t ∈ T and ̸ ∃v ∈ V ♣ (V 1 ∩ V 2) s.t. P ∪ t or P ∪ v is connected.

2.8 Rules to describe the graph evolution

In (Holder and Cook, 2009), the authors study how a single graph structurally evolved over
time. For this purpose, they specify graph rewriting rules that describe the evolution of two
graphs. Fig. 2.10 (a) depicts graph rewriting rules between graph Gi and Gi+1. It includes
removals (Ri) and additions (Ai) of edges between two graphs Gi and Gi+1. Then, a transfor-
mation rule which compresses rewriting rules and depicts structural changes (removals and
additions) between graphs, is extracted. As shown in Fig. 2.10 (b), a transformation rule is
simply deĄned as the common subgraph in removals and additions. (Holder and Cook, 2009)
propose an algorithm to discover rewriting rules whose main challenge is the extraction of
maximum common subgraphs between two graphs, which is a NP-complete task. However,
as they use labeled graphs in this method, discovering maximum common subgraph becomes
a quadratic problem.

Figure 2.10 Ű (a) Graph rewriting rules between graph Gi and Gi+1 (b) A transformation
rule that compresses the graph rewriting rules (e.g., a subgraph is removed from Gi and
then added in Gi+1). Notations: Ri, removals of edges between two graphs Gi and Gi+1, Ai,
additions of edges between two graphs Gi and Gi+1 (Holder and Cook, 2009)

In (Berlingerio et al., 2009), the authors introduce another problem that consists in
extracting graph evolution rules satisfying both a minimum support and a minimum conĄ-

25

dence constraint. A graph evolution rule is composed of a rule body → head where body is
a connected graph and head is a super-pattern of body. They develop an algorithm called
GERM (Graph Evolution Rule Miner) based on a depth-Ąrst search strategy to mine all
graph evolution rules satisfying user deĄned support and conĄdence thresholds. They use
the minimum image based support measure proposed in (Bringmann and Nijssen, 2008). It
depends on the number of unique nodes in the graph G = (VG, EG, λG) which a node of the
pattern P = (VP , EP , λP) is mapped to. Fig. 2.11 depicts an example of minimum image
based support. The support of the pattern is 2 although this pattern has three occurrences.
That is because the two white vertices could only be mapped to the same vertices 1 and 8.
The main advantage of this deĄnition is to avoid a maximal independent set problem for each
candidate pattern. A conĄdence measure is deĄned as the ratio of number of occurrences of
head and body. It permits to calculate the likeness between steps of a graph evolution rule
(head and body).

Figure 2.11 Ű Example of a pattern with three different occurrences

3. Pattern mining in dynamic attributed graph

Methods presented in the previous section aim to study a single dynamic labeled graph or
a collection of dynamic labeled graphs. However, such graph representations are limited,
because each vertex is described by a single label, i.e. a single information. However, in
many applications, objects/vertices are characterised by several attributes. For example, in
a co-authorship network, where vertices represent authors and edges depict the co-authorship
between authors, vertices could be labeled by a set of attributes which represent the number
of publications in different conferences or journals (instead of only one attribute: authorŠs

26 3. Pattern mining in dynamic attributed graph

name). With additional information, we could analyze their research domain and their pref-
erences. An aquaculture dataset (time series of satellite images) is another example. As
already stated, with the development of remote sensing technology, we could obtain numer-
ous vertex attributes, such as present/abscence of vegetation, presence/absence of water,
presence/absence of aerator, etc. Thus, a dynamic attributed graph is proposed to model
more complicated real-world phenomena where vertices are labeled by a set of attributes
and both vertex attributes and edges could evolve over time. However, few methods have
been proposed to mine such graphs. This task is complex because we have to consider
both complexity of graph structure (e.g. connectivity, graph isomorphism etc.) and itemset
complexity, which lead to a combinatorial explosion.

Figure 2.12 Ű Example of dynamic attributed graph

A dynamic attributed graph is a single sequence of attributed graphs G = ⟨Gt1
, Gt2

, ...,

Gtmax⟩ which represents the evolution of an attributed graph over a set of time T =
¶t1, . . . , tmax♢. As shown in Fig. 2.12, the set of vertices of G is denoted V. Each ver-
tex is described by a set of attributes A (numerical or categorical). Each attribute a ∈ A is
associated with a domain value Da. For each time t ∈ T , Gt = (Vt, Et, λt) is an attributed
undirected graph where Vt ⊆ V is the set of vertices at time t, Et ⊆ Vt × Vt is the set of
edges at time t and λt : Vt → 2AD is a function that associates each vertex of Vt with a set
of values AD =

⋃

a∈A(a × Da).

3.1 Triggering pattern mining

In (Kaytoue et al., 2014), the authors deĄne the triggering pattern problem which allows
to Ąnd temporal relationships between vertex attributes and their topological properties
(degree, betweeness, number of cliques etc.).

Given a dynamic attributed graph, let D be a set of descriptors (either vertex attributes
or their topological properties), S = ¶+, −, ∅♢, a set of symbols to denote increase, decrease
and remain constant. A triggering pattern is deĄned as a sequence P = < L, R > where L

State of the art 27

Figure 2.13 Ű A triggering pattern < ¶a+, b+♢, ¶c−♢ → ¶deg+♢ > whose support equals 2
(orange line and blue line), (Kaytoue et al., 2014)

is a sequence of descriptor variations sets (L =< X1, ..., Xk > with Xj ⊆ (D × S)), and R is
a single topological variation, R ∈ (M × S), where M is a set of topological attributes such
as degree, closeness and betweenness etc. The authors deĄne two interesting measures: the
growth rate and the coverage.

Let P =< L, R >, ∆ a set of all sequences representing evolution of each vertex and ∆R ⊆
∆ is the set of vertex descriptive sequences that contain R. The growth rate of P is given by:
GR(P, △R)= ♣SUP P (L,△R)♣

♣△R♣
× ♣△\△R♣

SUP P (L,△R)
Coverage of a triggering pattern is deĄned as the

set of vertices which support a pattern, i.e. ♣COV (P, △)♣. The problem is then to extract
frequent triggering patterns, i.e., patterns that satisfy a minimum growth rate threshold
minGR and a minimum coverage threshold minCov. Approaches for extracting triggering
patterns have several possible applications. For example, Fig. 2.13 shows a social network
whose vertices are users. Vertex attributes a, b and c describe number of updated blogs,
positive opinions to other users and negative comments received from others respectively.
For example, the sequence < ¶a+, b+♢, ¶c−♢ → ¶deg+♢ > is supported by two vertices u1 and
u3, it illustrates the fact that a blogger who updates blogs more often, gives more positive
opinions to others and receives less negative comments, becomes often more popular.

The authors design an efficient algorithm TRIGAT to mine triggering patterns. First,
TRIGAT generates all 1-item sequences satisfying coverage constraint. Then, it extends
patterns using a pattern-growth strategy. The preĄx sequences s can be extended by adding
a single descriptor variation at the end of the sequence.

Extracted patterns allow to show the impacts of attributes variations on topological
properties. However, this approach is limited, as it cannot consider the global graph struc-
ture (connectivity, diameter etc.) and every vertex is independently modeled as a sequence
of itemsets composed of vertex attributes and topological properties (degree, betweeness,
number of cliques etc.).

3.2 Cohesive co-evolution pattern mining

In (Desmier et al., 2012), the authors deĄne cohesive co-evolution patterns. Such patterns
represent a set of vertices with the same attributes and a similar neighborhood over a set
of timestamps (vertices and attributes were Ąxed). The input database is a single dynamic
attributed graph G = ⟨Gt1

, Gt2
, ..., Gtmax⟩ which represents the evolution of a graph over a

28 3. Pattern mining in dynamic attributed graph

set of time T = ¶t1, . . . , tmax♢. The set of vertices of G is denoted V. Each vertex is labeled
by a set of attributes A (numerical or categorical). Each attribute a ∈ A is associated
with a domain value Da = ¶+, −, =♢ which describes the evolution (increasing, decreasing
and constant) of attribute values. For each time t ∈ T , Gt = (V, Et, λt) is an attributed
undirected graph where V ⊆ V is the set of vertices, Et ⊆ Vt × Vt is the set of edges at time
t and and λt : Vt → 2AD is a function that associates each vertex of Vt with a set of values
AD =

⋃

a∈A(a × Da).
Given a dynamic attributed graph, a cohesive co-evolution pattern is a triplet (N, T, P)

where N ⊆ V , T ⊆ T is a set of not necessarily consecutive timestamps and P is a set of
signed attributes, i.e. P ⊆ A × S. This triplet must satisfy the following conditions: (1)
each signed attribute as ∈ P represents an attribute trend that has to be satisĄed by every
vertex v ∈ V and at every timestep t ∈ T , (2) (N, T, P) is maximal: adding any vertex, any
timestamp or any signed attribute leads to the violation of (1), (3) at each time t ∈ T , the
vertices of the pattern have to be cohesive through the graph. Given a similarity threshold
σ ∈ [0, 1] and a similarity measure sim, a co-evolution pattern (N, T, P) is cohesive iff:
cohesive(N, T, P) ≡ ∀t ∈ T, ∀u, v ∈ N2, sim(u, v, Gt) ≥ σ

Cohesiveness is important because it permits to consider the graph structure. For ex-
ample, with a co-authorship network, this constraint allows to focus on the authors having
co-author relationship. This constraint permits to assess vertex similarities by pairs, i.e.
likeness of their neighbourhood. Any similarity measure can be considered. The authors
choose Cosine (Tan, 2006) and Jaccard (Jaccard, 1912) measures considering only the di-
rect neighbourhood of vertices. Another interesting measure named volume is deĄned to
Ąnd interesting patterns. This measure evaluates the size of pattern as a three-dimensional
volume: volume((N, T, P)) = ♣N ♣ × ♣T ♣ × ♣P ♣.

Figure 2.14 Ű Example of cohesive co-evolution pattern

Fig. 2.14 shows an example of cohesive co-evolution pattern (red bold) (¶1, 5♢, ¶t1, t3, t4♢,
¶a−

1 ♢), i.e. attribute a1 of vertices 1 and 5 follows the same trend (decreasing) over three
graphs G1, G2 and G4. We can observe that attribute a1 of vertex 4 (green bold) follows the
same trend (decreasing) over G1, G2 and G4. Yet, the pattern (¶1, 4, 5♢, ¶t1, t3, t4♢, ¶a−

1 ♢) is
not cohesive, because vertex 4 does not have any neighbor in t4.

Let G be a single dynamic attributed graph. Given a similarity measure sim, a min-

State of the art 29

imum vertex similarity threshold σ and a minimum volume threshold θ, mining cohesive
co-evolution patterns consists in Ąnding the complete set of co-evolution patterns that have
a volume no less than θ and that satisfy the cohesiveness constraint. The authors develop a
novel algorithm to extract co-evolution patterns. They decompose the original search space
into smaller pieces such that each portion can be independently computed in main memory.
All valid triplets (N, T, P) are enumerated in a depth-Ąrst search manner. Finally, they union
the three sets N , T and P extracted from each portion to generate the Ąnal co-evolution
pattern.

The authors extended their work in (Desmier et al., 2013) by integrating constraints
on graph topology and on attribute values to extract maximal dynamic attributed sub-
graphs. Given a dynamic attributed graph G = ⟨Gt1

, Gt2
, ..., Gtmax⟩, and a set of measures,

the problem is to enumerate all trend sub-graphs (U, S, Ω) in a dynamic attributed graph
(V, T, λ) where U is a subset of V, S is a subsequence of T and Ω is a subset of signed attributes
λ. They deĄne two more interesting measures compared to the former one (Desmier et al.,
2012): vertex speciĄcity and trend relevancy. The Ąrst one allows to show the similarity
between vertices outside the trend sub-graph and the ones inside this sub-graph. The second
one allows to understand if attributes not belonging to Ω follow homogeneous trends on
subgraph. The authors develop an algorithm based on a depth-Ąrst exploration strategy to
Ąnd trend subgraph patterns.

These approaches are nevertheless limited because of the following reasons. Firstly, all
vertex attributes have to follow the same trend over time. They do not consider patterns
whose vertices and signed attributes follow different trend over time. Let us consider an
airline network. If we want to study the impact of hurricanes on cancelled Ćight, an extracted
co-evolution pattern could depict an increasing trend of cancelled Ćights when hurricane
come. However, it is impossible to know how cancelled Ćights evolve in the following time
when hurricane becomes weaker or disappears. Secondly, vertices are Ąxed, whereas, in
many applications, vertices also evolve over time. For example, in an aquaculture dataset,
a vertex (aquaculture pond) could be divided into several vertices and several vertices could
be merged into one vertex over time.

30 3. Pattern mining in dynamic attributed graph

Chapter 3

Contributions

Contents

1 Mining recurrent patterns in a dynamic attributed graph 33

1.1 Dynamic attributed graph . 34

1.2 A new pattern domain and its constraints 35

1.2.1 Recurrent evolutions of vertices 35

1.2.2 Interesting measures and constraints 36

1.2.3 Problem setting . 38

2 Algorithm . 39

2.1 Intersection of attributed graphs . 39

2.2 Generation of a size-1 pattern . 42

2.3 Extension of a size-1 pattern . 44

2.4 Algorithm RPMiner . 47

2.5 Algorithm time complexity and completeness 50

3 Experimental results . 52

3.0.1 Datasets . 52

3.0.2 Quantitative Results . 53

3.0.3 Qualitative interpretation 60

31

32

33

1. Mining recurrent patterns in a dynamic attributed

graph

As discussed in the state of the art, sequences and graphs become omnipresent models for
analyzing data. Recently a richer model of graph, named a dynamic attributed graph, has
received more attention. It can be used to model various real world datasets. For instance,
an aquaculture dataset composed of satellite images time series can be modeled as a dy-
namic attributed graph. Vertices are objects (ponds) detected in the images, edges represent
spatial relationships between objects and vertex attributes represent the characteristics such
as presence of vegetation, activity, aerator etc in ponds. Another example is a social book-
marking system, where vertices represent users and edges describe mutual fan relationships.
Users are characterized by bookmarks they shared for different categories (music, games,
politics, etc.). Analyzing a dynamic attributed graph is interesting because of two main
reasons. Firstly, this data structure permits to model more interesting and complex real
world phenomena as vertices are labeled by a set of attributes instead of a single attribute.
Secondly, not only the graph structure (edges) but also vertices and their attributes could
evolve over time. Here, we extend the deĄnition of a dynamic attributed graph which was
initially proposed in (Desmier et al., 2012) where all vertices are Ąxed. Because in many
real world datasets, vertices may evolve over time (e.g. appear or disapper). For example, a
vertex (e.g. an aquaculture pond) could be divided into several vertices, and several vertices
could be merged into one vertex over time. To the best of our knowledge, few methods have
been proposed to mine a dynamic attributed graph because it is a difficult task due to the
complexity of such graph structure and the important number of attribute combinations.
In (Desmier et al., 2012), the authors mined cohesive co-evolutions in a dynamic attributed
graph. These patterns represent a set of vertices with same values for a subset of attributes
and a similar neighborhood over a set of timestamps (vertices and attributes were Ąxed).
In our work, we deĄne a more general pattern domain, called recurrent pattern, which de-
scribe recurrent evolutions in a dynamic attributed graph. It enables to capture not only
vertices having same attribute values for periods of time such as in (Desmier et al., 2012;
Desmier et al., 2013), but also to capture evolutions of attribute values and vertices over
time. The patterns consist in connected subgraph sequences satisfying topological, frequency
and non-redundancy constraints in the input data.

This chapter is organized as follows. In section 3.1, we introduce a dynamic attributed
graph. Then we deĄne our pattern domain and several constraints which allow users to Ąlter
interesting patterns. In section 3.2, we develop an original algorithm, called RPminer, based
on graph intersections and a progressive extension of patterns over time. Section 3.3 reports
experiments performed on artiĄcial and real-world data that demonstrate the efficiency of
the algorithm, its generality and interest of extracted patterns.

34 1. Mining recurrent patterns in a dynamic attributed graph

1.1 Dynamic attributed graph

The input database is a single dynamic attributed graph G = ⟨Gt1
, Gt2

, ..., Gtmax⟩ which
represents the evolution of a graph over a set of time T = ¶t1, . . . , tmax♢. The set of vertices
of G is denoted V. Each vertex is labeled by a set of attributes A (numerical or categorical).
Each attribute a ∈ A is associated with a domain value Da. For each time t ∈ T , Gt =
(Vt, Et, λt) is an attributed undirected graph where: (1) Vt ⊆ V is the set of vertices at time
t, (2) Et ⊆ Vt × Vt is the set of edges at time t and (iii) λt : Vt → 2AD is a function that
associates each vertex of Vt with a set of values AD =

⋃

a∈A(a × Da). Fig. 3.1 presents an
example of dynamic attributed graph with V = ¶v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12♢,
T = ¶T1, T2, T3, T4, T5♢ and A = ¶a1, a2♢. The value of the attribute a at time t for vertex
v is denoted as Gt(v, a). For instance, G1(v5, a1) = 5.

Figure 3.1 Ű An example of dynamic attributed graph G

In this manuscript, in addition to numeric and categorical vertex values, we also study
the trends of attributes (increasing, decreasing and constant), i.e., evolutions of the vertex
attribute values between two consecutive timestamps Ti and Ti+1. Fig. 3.2 depicts the
dynamic attributed graph after pre-processing. Edges for each time ti are the edges of the
timestamp Ti+1, and the trend is the evolution of attribute values between Ti and Ti+1.
There is ♣T ♣−1 time steps. In the following, we consider Da = ¶+, −, =♢ in order to simplify
the given examples.

Methodological contributions 35

Figure 3.2 Ű Toy example: from values to trends

1.2 A new pattern domain and its constraints

1.2.1 Recurrent evolutions of vertices

Let (V, λ) be a subset of attributed vertices of G with V ⊆ V and λ : V → 2AD. (V, λ) can
be considered as an attributed graph without edges. The deĄnition of attributed subgraph
presented in the previous section can be easily restrained to a set of attributed vertices. We
then have (V ′, λ′) ⊑ (V, λ), iff V ′ ⊆ V and ∀v′ ∈ V ′ : λ′(v′) ⊆ λ(v′). To facilitate the reading
of examples, (V, λ) can also be denoted (v1 : λ(v1) ♣ v2 : λ(v2) ♣ ...), ∀v1, v2... ∈ V . As shown
in Fig. 3.2, (1 : a1 + a2− ♣ 2 : a1 + a2− ♣ 3 : a1 − a2− ♣ 4 : a1 − a2+ ♣ 5 : a1 − a2−) is a set of
attributed vertices at time t1.

An evolution of a subset of vertices of G starting at time t ∈ T is a sequence S = ⟨(V ′
1 , λ′

1)
(V ′

2 , λ′
2) . . . (V ′

k, λ′
k)⟩, such as ∀i ∈ ¶1, 2, ..., k♢, ∃E′

i ⊆ Et+i−1, (V ′
i , E′

i, λ′
i) ⊑ Gt+i−1. For ex-

ample, in Fig. 3.2, ⟨(1 : a1 + a2− ♣ 2 : a1 + a2− ♣ 3 : a1 − a2− ♣ 4 : a1 − a2+ ♣ 5 : a1 − a2−)
⟨(1 : a1 + a2+ ♣ 2 : a1 + a2− ♣ 5 : a1 − a2+)⟩ is an evolution starting at time t1.
⟨(1 : a1 + a2+ ♣ 2 : a1 + a2− ♣ 5 : a1 − a2+) (1 : a1 + a2− ♣ 2 : a1 − a2− ♣ 3 : a1 − a2+)
(1 : a1 + a2− ♣ 3 : a1 + a2− ♣ 5 : a1 − a2+)⟩ is an evolution starting at time t2.

Let TP = ¶ti1
, ..., tim♢ be a set of times associated with the evolution SP = ⟨(V ′

1 , λ′
1)

(V ′
2 , λ′

2) . . . (V ′
k, λ′

k)⟩. A recurrent evolution of a subset of vertices of G starting at times TP

36 1. Mining recurrent patterns in a dynamic attributed graph

according to the sequence SP , is denoted P = (SP , TP). In this case, the size of P is k. In
Fig. 3.2,

(⟨(1 : a1+ ♣ 2 : a1 + a2− ♣ 5 : a1−)(1 : a1+ ♣ 2 : a2−)⟩, ¶t1, t2♢)

is an example of
recurrent pattern starting at times t1 and t2. This pattern represents a connected subgraph
composed of v1, v2 and v5 followed by a connected subgraph composed of v1 and v2. This
pattern appears two times in the database, so its frequency is 2.
A relation of specialization/generalization can be deĄned on this pattern domain. Let P1 =
(⟨(V ′

1 , λ′
1) (V ′

2 , λ′
2) . . . (V ′

k, λ′
k)⟩, TP 1

)

and P2 =
(⟨(V ′′

1 , λ′′
1) (V ′′

2 , λ′′
2) . . . (V ′′

l , λ′′
l)⟩, TP 2

)

be two
patterns representing two recurrent evolutions of G. P1 is a recurrent evolution more general
(resp. more speciĄc) than P2, denoted P1 ⪯ P2 (resp. P1 ⪰ P2), if there exists j ∈
¶0, ..., l − k♢, such as ∀i ∈ ¶1, ..., k♢, (V ′

i , λ′
i) ⊑ (V ′′

i+j , λ′′
i+j). In Fig. 3.2, (⟨1 : a1+ ♣ 2 :

a1 + a2− ♣ 5 : a1−)(1 : a1+ ♣ 2 : a2−)⟩, ¶t1, t2♢) is a recurrent pattern more speciĄc than
(⟨(1 : a1+ ♣ 2 : a1 + a2−)(1 : a1+)⟩, ¶t1, t2♢)

.

1.2.2 Interesting measures and constraints

In this subsection, we deĄne several measures and constraints to Ąlter interesting patterns.

Firstly, we consider the graph structure. We propose three constraints taking into account
the graph structure, i.e. connectivity of vertices, cohesiveness and volume of extracted
patterns. In addition, we consider two temporal constraints: temporal continuity and gap.
Finally, we consider the "classical" constraints such as frequency and non-redundancy.

Connectivity. In a graph, vertices often represent individuals/objects, and edges rep-
resent relationships between these individuals/objects. Integration of a connectivity con-
straint between vertices during pattern mining enables to focus on related objects. Let us
consider for instance, in a dataset dealing with aquaculture dataset. A set of vertex-labels
{Active/InActive, WithVegetation/WithoutVegetation} is assigned to each pond. It is inter-
esting to understand how a set of adjacent ponds evolve over time, because adjacent ponds
may interact with each other (for example, virus could spread from one to its neighbor, activ-
ities of adjacent ponds could be inĆuenced by the same forest, mangrove, river or residential
area etc.). P =

(⟨(V ′
1 , λ′

1) (V ′
2 , λ′

2) . . . (V ′
k, λ′

k)⟩, TP

)

is an evolution of connected vertices
in G if ∀t ∈ TP , ∀i ∈ ¶1, 2, ..., k♢, ∃E′

i ⊆ Et+i−1, (V ′
i , E′

i, λ′
i) ⊑conn Gt+i−1. In Fig. 3.2,

(⟨(1 : a1+ ♣ 2 : a1 + a2− ♣ 5 : a1−)(1 : a1+ ♣ 2 : a2−)⟩, ¶t1, t2♢)

is an evolution of connected
vertices.

Cohesiveness. This constraint (Desmier et al., 2012) esures that the neighborhood of
pairs of pattern vertices is cohesive. It calculates the similarity of the neighborhood or the
neighborhood structure to extract a set of vertices which are closely related. For instance, in a
DBLP dataset, this constraint permits to depict close working relationships between authors.
Given a minimum similarity threshold minsim ∈ [0, 1] and a similarity measure, a pattern
P =

(⟨(V ′
1 , λ′

1) (V ′
2 , λ′

2) . . . (V ′
k, λ′

k)⟩, TP

)

is cohesive if ∀v ∈ V ′
i , with 1 ≤ i ≤ k, ∃u ∈ V ′

i , such
as sim(v, u, V ′

i) ≥ minsim

Methodological contributions 37

Here, any similarity measure can be used to discover patterns with different graph struc-
tures. We propose to use Cosine (Tan, 2006) and Jaccard (Jaccard, 1912) similarities which
consider only the similarity of direct vertex neighborhood. Let N(u) be the adjacent neigh-
borhood of u.

Cosine(u, v) =

♣(N(u))∩(N(v))♣√
♣N(u)♣×♣N(v)♣

Jaccard(u, v) =

♣(N(u))∩(N(v))♣
♣N(u)♣∪♣N(v)♣

Volume. Volume is another measure commonly applied in the context of graph min-
ing. It is deĄned as the number of vertices of a graph. It can represent, for instance,
the size of a community in a social network. Let vol(P) = min∀i∈¶1...k♢(♣V ′

i ♣) be the vol-
ume of pattern P =

(⟨(V ′
1 , λ′

1) . . . (V ′
k, λ′

k)⟩, TP

)

. P is a sufficiently voluminous pattern
iff vol(P) ≥ minvol, where minvol is a user-deĄned threshold. For example, pattern
(⟨(1 : a1+ ♣ 2 : a1 + a2− ♣ 5 : a1−)(1 : a1+ ♣ 2 : a2−)⟩, ¶t1, t2♢)

has a volume of 2.

Temporal continuity. By default, an evolution may include entirely different vertices at
each step. In other words, if P =

(⟨(V ′
1 , λ′

1) (V ′
2 , λ′

2) . . . (V ′
k, λ′

k)⟩, TP

)

, then it is possible to
have

⋂

∀i∈1...k V ′
i = ∅. Interpreting such evolutions can be difficult for end users because

there is actually no direct relation between individuals/objects (represented by vertices)
at different timestamps. We propose a new constraint to target patterns which describe
evolutions around a common core of individuals. Such a constraint allows to follow evolutions
of a number of vertices over time while taking into account neighboring vertices (directly
or indirectly). Let P =

(⟨(V ′
1 , λ′

1) (V ′
2 , λ′

2) . . . (V ′
k, λ′

k)⟩, TP

)

be a pattern. Let com(P) =
♣ ⋂

∀i∈1...k V ′
i ♣ be the number of vertices occurring at all times in TP . P is a continuous

pattern over time iff com(P) ≥ mincom, where mincom is a user-deĄned threshold. For
instrance, pattern

(⟨(1 : a1+ ♣ 2 : a1 + a2− ♣ 5 : a1−)(1 : a1+ ♣ 2 : a2−)⟩, ¶t1, t2♢)

has
two common vertices at t1 and t2, i.e. com(P) = 2 while com(P) = 0 for the pattern
(⟨(1 : a1+ ♣ 2 : a1 + a2− ♣ 5 : a1−)(6 : a1 − a2− ♣ 11 : a1 − a2+ ♣ 12 : a1 − a2−)⟩, ¶t1, t2♢)

.

Gap. Gap is a measure commonly applied in the context of sequence mining (Fournier-
Viger et al., 2008). It is deĄned as the time interval allowed between every two successive
subgraphs of a recurrent pattern. It permits to study short term as well as long term
evolutions. For example, if we study a DBLP co-authorship dataset, with gap=5 years, we
could extract patterns describing general evolutions of authors, i.e., author A and author B
Ąrstly work with C and D, then in the following 5 years with F and G. While if we set gap to
2 years, we will get more speciĄc evolutions over a smaller period of time: in the Ąrst 2 years
A and B worked with authors C, D and E. Then, in the following 2 years, they worked with
C, D, F and G. Next, they worked with C, F and G, and then with F, G and H, Finally they
worked with F, G, H and I. Let gap(P)=extractgap, gap is a user-deĄned threshold. For
example, given gap=2,

(⟨(6 : a2− ♣ 11 : a1− ♣ 12 : a1−)(6 : a1 − a2− ♣ 9 : a1 + a2−)⟩, ¶t1, t2♢)

(extracted from Fig. 3.2) depicts a long term evolution in which time interval of every two
consecutive graphs equals to 2.

38 1. Mining recurrent patterns in a dynamic attributed graph

Frequency. Minimum frequency is one of the most widely used constraints. It aims to
Ąlter patterns which occur more than a minimum number of times. It is commonly applied
when a database is a collection of transactions. However, deĄning a frequency constraint is
generally more challenging in a single graph context (Fiedler and Borgelt, 2007; Nijssen and
Bringmann, 2008), mainly because of the presence of embedded overlappings. Nevertheless,
frequency is easy to calculate in our case because of the nature of the extracted patterns.
Indeed, the frequency of a pattern is simply the number of times at which a given evolution
begins. It represents the number of recurrences of this evolution. Let P = (SP , TP) be
a pattern. Frequency of P is sup(P) = ♣TP ♣. Consequently, P is a frequent evolution iff
sup(P) ≥ minsup, where minsup is a user-deĄned threshold. For example, in Fig. 3.2, the
frequency of

(⟨(6 : a2− ♣ 11 : a1− ♣ 12 : a1−)(11 : a1 − a2+ ♣ 12 : a1 − a2−)⟩, ¶t1, t2, t3♢)

is 3
since it begins at t1, t2 and t3.

Non-redundancy. A huge number of patterns can be extracted. However, some of these
patterns may contain redundant information. For example, if two patterns P1 = (SP 1, TP 1)
and P2 = (SP 2, TP 2) are such that P1 ⪯ P2 and TP 1 = TP 2, then it is not necessary to keep
P1. Indeed, the sequence of attributed vertices of P1 is present in P2 and the two patterns
occur exactly at the same times. The non-redundancy constraint is close to the notion of
closure that has been applied to a large number of pattern domains (e.g. itemsets, sequences,
trees) (Yan et al., 2003; Huang et al., 2006; Gomariz et al., 2013; Wang et al., 2007).
More formally, let Sol be a set of non-redundant pattern solutions. Let P1 = (SP 1, TP 1) and
P2 = (SP 2, TP 2) be two recurrent patterns. If P1 ∈ Sol then ∄P2 ∈ Sol such as P1 ≺ P2
and TP 1 = TP 2. In Fig. 3.2,

(⟨(1 : a1+ ♣ 2 : a1 + a2−)(1 : a1+ ♣ 2 : a2−)⟩, ¶t1, t2♢)

is a redun-
dant evolution with respect to

(⟨(1 : a1+ ♣ 2 : a1 +a2− ♣ 5 : a1−)(1 : a1+ ♣ 2 : a2−)⟩, ¶t1, t2♢)

.

1.2.3 Problem setting

Given a dynamic attributed graph G, the problem is to enumerate the complete set of
recurrent evolutions in G, denoted Sol, such that ∀P ∈ Sol: 1) vertices of P are connected
or cohesive at each time (i.e. cosine(P) ≥ mincos); 2) P is sufficiently voluminous (i.e.
vol(P) ≥ minvol); 3) P is frequent (i.e. sup(P) ≥ minsup); 4) P is not redundant in Sol;
5) P is centered around a core of vertices sufficiently large (i.e. com(P) ≥ mincom); and 6)
the interval between every two successive subgraphs equals to gap, where mincos, minsup,
minvol, mincom and gap are user-deĄned thresholds. Intuitively, recurrent patterns are
sequences of connected subgraphs which represent recurring evolutions of related subsets of
nodes w.r.t. their attributes.

39

2. Algorithm

In this section, we introduce an enumeration strategy to extract recurrent patterns satisfying
constraints stated above. Unlike a number of pattern mining algorithms, our approach is not
based on a generate-test strategy (where candidate patterns are generated, tested and then
combined). It performs neither a breadth-Ąrst nor a depth-Ąrst search. It is not based on a
projection strategy either (such as PrefixSpan). Instead, our method is an iterative approach
based on successive intersections and extensions of connected components occurring over
time. As shown in Fig. 3.3, in each iteration, size-1 fragments are generated by processing
time combinations T k

i containing ti, where minsup ≤ k ≤ ♣T ♣ and then they are progressively
combined to generate solutions. We thus get a set of solutions of different sizes at each
iteration (at each time). The main advantage of this approach is to avoid generating a large
number of patterns which do not satisfy the constraints. In the following subsection, we
introduce the notion of intersection between attributed graphs and explain its interest w.r.t.
our pattern mining problem.

2.1 Intersection of attributed graphs

Intersections of graphs permit to bring out two properties.

Intersection and frequency. Let us consider two times i, j ∈ T . The intersection of
two attributed graphs Gi = (Vi, Ei, λi) and Gj = (Vj , Ej , λj), ∀Gi, Gj ∈ G denoted by
Gi ⊓ Gj , is an attributed graph G = (V, E, λ) such as V = Vi ∩ Vj , E = Ei ∩ Ej , ∀v ∈ V ,
λ(v) = λi(v) ∩ λj(v). The result is a subgraph composed of vertices, edges and attribute
values common to the two initial graphs. We can notice that every subgraph of G occurs at
least two times in G. In Fig. 3.4, let us consider only a part of G for clarity of presentation.
The subgraph c ⊏ G1 ⊓ G3 occurs at least 2 times (at t1 and t3).
This deĄnition can be generalized to the intersection of k graphs, with k ∈ ¶2, 3, ...♣T ♣♢. Let
T k ⊆ T be a subset of times of G such that ♣T k♣ = k. The graphs intersection in G at the
k times in T k, denoted by ⊓

i∈T k
Gi, is a graph G = (V, E, λ), with V = ∩

i∈T k
Vi, E = ∩

i∈T k
Ei,

∀v ∈ V , λ(v) = ∩
i∈T k

λi(v). The minimum frequency in G of all subgraphs of ⊓
i∈T k

Gi is k.

Consequently, all patterns constructed from intersection of minsup graphs of G will satisfy
the minimum frequency constraint.

Intersection and non-redundancy. Intersections also have other properties. Let us
study in particular connected components (i.e. maximal connected subgraphs) resulting from
intersection of several graphs. We denote Ci⊓j the set of connected components obtained after
intersection of graphs in G at times i and j, i.e. Gi ⊓ Gj . More formally, Ci⊓j = ¶(V, E, λ) ♣
(V, E, λ) ⊑conn Gi ⊓ Gj and ∄(V ′, E′, λ′), (V, E, λ) ⊏ (V ′, E′, λ′) s.t. (V ′, E′, λ′) ⊑conn Gi ⊓

40 2. Algorithm

Figure 3.3 Ű Main process of our algorithm

Gj♢.
Let us then consider two connected components c and c′ obtained after intersection of graphs
in G at times ¶i, j♢ and ¶k, l♢ respectively, i.e. c ∈ Ci⊓j and c′ ∈ Ck⊓l, ∀i, j, k, l ∈ T . Let
Tc = ¶t ∈ T ♣ c ⊑ Gt♢ (resp. Tc′) be the subset of times in T when the connected component
c (resp. c′) occurs. It is not possible to have c ⊏ c′ and Tc = Tc′ . Indeed it would imply
that c′ occurs at times ¶k, l♢ but also at ¶i, j♢. So, we would have c′ ⊑ Gi ⊓ Gj , which is
impossible since c is a connected component of Gi ⊓ Gj (thus it is maximal). In Fig. 3.4, the
connected component c1 = (6 : a2− ♣ 11 : a1− ♣ 12 : a1−) is in G1, G2 and G3. Consequently,
it appears in G1 ⊓ G2 and G1 ⊓ G3. In addition, there is no superset of vertices occurring at
the same times. On the other hand, the subset c2 = (11 : a1− ♣ 12 : a1−) can be obtained
by performing G1 ⊓ G4, but it is not redundant to c1 because it occurs at four times (t1,

Methodological contributions 41

Figure 3.4 Ű Example of graph intersection

t2, t3 and t4). To conclude, if c = (V, E, λ), then the pattern
(⟨(V, λ)⟩, Tc

)

satisĄes the
connectivity constraint (since it is a connected component), as well as the non-redundancy
constraint (w.r.t. size-1 patterns). In other words, this pattern will be either a solution or a
fragment of solution.
This property can be generalized to any set T, T ′ ⊆ T . We note C⊓T (resp. C⊓T ′), the set of
connected components obtained after intersection of graphs at times T (resp. T ′), i.e ⊓

i∈T
Gi.

If c ∈ C⊓T , then ∄c′ ∈ C⊓T′ such as c ⊏ c′ and Tc = Tc′ . Size-1 patterns associated with
those connected components satisfy both connectivity and non-redundancy constraints. The
inverse of this proposition is also true. All size-1 solutions and all size-1 pattern fragments
can be derived from connected components obtained after intersecting graphs in G. In other
words, these intersections provide the Šbuilding blocksŠ to construct solutions.
The interest of these intersections is to avoid performing a large number of inclusion tests
during pattern enumeration (to verify the frequency and non-redundancy constraints). The
number of intersections is 2♣T ♣. Thus, it depends only on the number of times in G, whereas
the number of inclusion tests depends on the number of patterns generated, which is much
higher.

42 2. Algorithm

2.2 Generation of a size-1 pattern

As shown in the previous section, size-1 patterns resulting from graph intersections directly
satisfy frequency, connectivity and non-redundancy constraints. To extract Ąnal solutions,
it is sufficient to verify volume and temporal continuity constraints. These constraints are
simple and not costly to calculate as they are based on the studied pattern structure. Size-1
solutions or size-1 fragments can be deĄned as follows: P = ¶(⟨(V, λ)⟩, T

) ♣ T ⊆ T , ♣T ♣ ≥
minsup, ♣V ♣ ≥ minvol, and ∃c = (V, E, λ) such as c ∈ C⊓T

}

.

A graph preprocessing is performed before intersections to reduce connectivity tests.
It consists in Ąnding all connected components of Gi (1 ≤ i ≤ ♣T ♣) whose volumes are
greater than minvol, denoted as Ci. As shown in Fig. 3.5, we Ąrstly extract the set of
connected components for G1, i.e., C1 = ¶(v1, v2, v3, v4, v5), (v6, v7, v8, v9, v10, v11, v12)♢. In
the same way, C2 = ¶(v1, v2, v5),(v3, v4), (v6, v11, v12), (v8, v9, v10)♢, C3 = ¶(v1, v2, v3),(v4, v5),
(v6, v7, v8, v9, v10, v11, v12)♢ and C4 = ¶(v1, v3, v5), (v6, v7, v8, v9, v10, v11, v12)♢ are extracted.
Intersections of connected components are then performed not on initial graphs but on their
connected components.

Figure 3.5 Ű Example of a dynamic attributed graph

Let us now present a two-step approach (algorithm 1) to intersect graphs Gi and Gj where
i, j ∈ T . Firstly, intersection is performed by simply Ąnding the common sets of vertices
CandV and the common set of edges CandE between Ci and Cj (Lines 1-6, algorithm 1). The
function CommonVerticesEdges (algorithm 2) aims to extract sets of vertices CandV with a

Methodological contributions 43

sufficient volume, which avoids lots of connectivity tests and Ąnd the set of common edges
CandE, which permits to verify the connectives of vertices in the following step (algorithm 3).
The second step (Lines 7-19, algorithm 1) aims to calculate common attributes and verify
vertex connectivity to determine Ąnal size-1 patterns. We browse each set V of CandV . For
a vertex vl ∈ V , if trends (or values) of at least one attribute al of vl are the same at both ti

and tj , the vertex and its attribute trend (value) will be added to the Ąnal set of connected
components (size-1 patterns) sol′ ∈ P with sol′ = (V ′, λ′). Otherwise, this vertex will be
kept in a new set of connected component sol∗ ∈ P . Then, in function CommonAttributes
(algorithm 3), we conduct the same operations for its neighbors N(vl) such as N(vl) ∈ V and
iteratively on neighbors of its neighbors N(N(vl)) such as N(N(vl)) ∈ V . This depth-Ąrst
process (algorithm 3) continues until it has browsed all vertices in V and extracts the Ąnal
size-1 patterns (complete sets of attributed connected components).

Algorithm 1: ExtractIntersect: mining size-1 patterns
Require: C = ¶Ci set of connected components of Gi♢, T : a set of times

Ensure: Set of size-1 patterns satisfying the constraints: Cand

1: CandV = ∅

2: CandE = ∅

3: let t′ ∈ T

4: for each c′ ∈ Ct′ , with c′ = (V ′, E′, λ′) do

5: CommonV erticesEdges(V ′, E′, T − t′,C, CandV, CandE)

6: end for

7: for each V ∈ CandV do

8: if V ̸= ∅ then

9: for each v ∈ V do

10: sol = ∅

11: Candλ(v) = ∩
t∈T

λt(v)

12: V = V − ¶v♢

13: if Candλ(v) ̸= ∅ then

14: CommonAttributes(v, V, CandE, T, sol, Cand)

15: end if

16: end for

17: end if

18: end for

19: return Cand

Algorithm 2: CommonVerticesEdges: mining candidates of size-1 patterns
Require: V ′, E′, T ′, C, CandV , CandE

Ensure: CandV : Common sets of vertices, CandE: Common set of edges

1: if T ′ = ∅ then

2: if ♣V ′♣ ≥ minvol then

3: CandV = CandV ∪ ¶V ′♢

4: CandE = CandV ∪ ¶E′♢

5: end if

6: else

7: let t∗ ∈ T ′

8: for each c∗ ∈ Ct∗ , with c∗ = (V ∗, E∗, λ∗) do

9: CommonverticesEdges(V ′ ∩ V ∗, E′ ∩ E∗, T ′ − ¶t∗♢,C, CandV, CandE)

10: end for

11: end if

For example, given a threshold minvol = 2, to extract subgraphs (size-1 patterns) of

44 2. Algorithm

Algorithm 3: CommonAttributes: mining Ąnal size-1 patterns
Require: v, V , CandE, T , sol = (V, λ): an attribute subgraph , Cand: set of size-1 patterns

Ensure: Cand: set of size-1 patterns

1: if V = ∅ and vol(sol) ≥ minvol then

2: Cand = Cand ∪ sol

3: else

4: for each neighbor of v, N(v) such as N(v) ∈ V and (v, N(v)) ∈ CandE do

5: Candλ(N(v)) = ∩
t∈T

λt(N(v))

6: if Candλ(N(v)) ̸= ∅ then

7: V = V − ¶N(v)♢

8: sol = sol ∪ ¶N(v), Candλ(N(v))♢

9: CommonAttributes(N(v), V, CandE, T, sol, Cand)

10: end if

11: end for

12: end if

G1 and G2, we calculate Ąrst the common sets of vertices CandV and the common set of
edges CandE of C1 and C2, i.e., CandV = ¶¶v1, v2, v5♢,¶v3, v4♢,¶v6, v11, v12♢,¶v8, v9, v10♢♢,
CandE = ¶(v1, v2), (v1, v5), (v3, v4), (v6, v12), (v8, v9), (v9, v10), (v11, v12)♢. Then, for the can-
didate connected component (v1, v2, v5), we calculate Ąrstly the common attributes of vertex
v1 between G1 and G2. As we can see in Fig. 3.5, vertex v1 shares the same evolution
for a1+ in graphs G1 and G2, so it is added to the Ąnal set of size-1 pattern sol′. Its
neighbors v2 (v2 ∈ V and (v1, v2) ∈ CandE) and v5 (v5 ∈ V and (v1, v5) ∈ CandE)
are then checked by calculating common attribute trends. This constructs the size-1 pat-
tern

(⟨(1 : a1+ ♣ 2 : a1 + a2− ♣ 5 : a1−)⟩, ¶t1, t2♢)

. As shown in Fig. 3.6, this approach
enables to Ąnd other size-1 patterns of G1 and G2 :

(⟨(3 : a2− ♣ 4 : a1−)⟩, ¶t1, t2♢)

,
(⟨(6 : a2− ♣ 11 : a1− ♣ 12 : a1−)⟩, ¶t1, t2♢)

and
(⟨(8 : a1+ ♣ 9 : a1 + a2− ♣ 10 : a2+)⟩, ¶t1, t2♢)

.
In this Ągure vertices of a subgraph are connected by a dotted line, because we do not
consider how the vertices are connected, we only know that the subgraph is connected.

We illustrate intersections with another example based on G2 and G3. We Ąrst calculate
the common sets of vertices CandV and the common set of edges CandE of C2 and C3, i.e.,
CandV = ¶¶v1, v2♢,¶v6, v11, v12♢, ¶v8, v9, v10♢♢ and CandE = ¶(v1, v2), (v6, v12), (v8, v9), (v11, v12)♢.
We can see that by calculating CandV , the vertices v3, v4 and v5 are already deleted from
the original sets which reduces connectivity tests. Then, for the candidate connected com-
ponent V = (v1, v2), we check the attribute trends of vertex v1. The vertex v1 shares the
same evolution a1+ in graphs G2 and G3. Its neighbor v2 (v2 ∈ V and (v1, v2) ∈ CandE)
is then veriĄed by calculating common attribute trends and the size-1 pattern

(⟨(1 : a1+ ♣
2 : a2−)⟩, ¶t2, t3♢)

is recursively constructed. In the same way, we get another size-1 pat-
tern

(⟨(6 : a1 − a2− ♣ 11 : a1 − a2+ ♣ 12 : a1 − a2−)⟩, ¶t2, t3♢)

from (v6, v11, v12). For
V = (v8, v9, v10), we can notice that although v8 v9 and v10 are all in V , (v9, v10) /∈ CandE.
So v10 is rejected and we obtain the Ąnal size-1 pattern

(⟨(8 : a1+ ♣ 9 : a1 + a2−)⟩, ¶t2, t3♢)

.

2.3 Extension of a size-1 pattern

Given a size-1 pattern, its possible extensions are generated by processing times (and cor-
responding graph intersections) incrementally. Next, size-1 patterns extracted by these in-
tersections can be combined, according to the times when they occur, to built the solutions.

Methodological contributions 45

Figure 3.6 Ű Size-1 pattern examples

This extension can be done by processing times incrementally.

Figure 3.7 Ű Intersections and extensions in parallel of patterns from ¶t1, t2♢

Fig. 3.7 illustrates this incremental generation starting from times t1 and t2. It displays
parallel extensions of a pattern which occurs at t1 and t2. As the frequency constraint is di-
rectly related to the number of "intersected" times, we can conclude that minimum frequency
in this example is 2. Suppose that there exists a solution P =

(⟨(V ′
1 , λ′

1)(V ′
2 , λ′

2) . . . (V ′
n, λ′

n)⟩, ¶t1, t2♢)

.
Let Ci and Cj be the sets of connected components of Gi and Gj . Intersection between C1

and C2 results in a graph composed of several connected components, such as c = (V ′
1 , E′

1, λ′
1),

occurring at times t1 and t2. Pattern P =
(⟨(V ′

1 , λ′
1)⟩, ¶t1, t2♢)

can be generated based on
that intersection. The Ąrst occurrence of this pattern is at time t1, and the second one at
time t2. Candidate extensions for these occurrences can only be at t2 and t3 respectively

46 2. Algorithm

(since gaps considered in this example is 1). Now let us consider times ¶t2, t3♢. Let us
suppose that c′ = (V ′

2 , E′
2, λ′

2) is a connected component of C2 ⊓ C3. If c and c′ share a
sufficient number of vertices (temporal continuity constraint), then we can extend the pat-
tern P to obtain

(⟨(V ′
1 , λ′

1)(V ′
2 , λ′

2)⟩, ¶t1, t2♢)

. This process continues until no more extension
can be performed. At each iteration, connected components can be used to extend patterns
from the previous iteration, but they can also be "starting points" for new patterns. As a
consequence, these successive extensions generate all solutions starting at time t1, then all
solutions starting at time t2, etc.

Figure 3.8 Ű An example of extension of a size-1 pattern

For example, let us consider the following size-1 patterns generated from the intersection
of G1 and G2:

(⟨(1 : a1+ ♣ 2 : a1 + a2− ♣ 5 : a1−)⟩, ¶t1, t2♢)

,
(⟨(3 : a2− ♣ 4 : a1−)⟩, ¶t1, t2♢)

,
(⟨(6 : a2− ♣ 11 : a1− ♣ 12 : a1−)⟩, ¶t1, t2♢)

,
(⟨(8 : a1+ ♣ 9 : a1 + a2− ♣ 10 : a2+)⟩, ¶t1, t2♢)

.
We calculate Ąrstly all size-1 patterns of G2 and G3:
(⟨(1 : a1+ ♣ 2 : a2−)⟩, ¶t2, t3♢)

,
(⟨(6 : a1 − a2− ♣ 11 : a1 − a2+ ♣ 12 : a1 − a2−)⟩, ¶t2, t3♢)

,
(⟨(8 : a1+ ♣ 9 : a1 + a2−)⟩, ¶t2, t3♢)

.
Then, we extend size-1 patterns of G1 and G2 by verifying the temporal continuity

constraint. Given a threshold mincom = 1,
(⟨(1 : a1+ ♣ 2 : a1 + a2− ♣ 5 : a1−)⟩, ¶t1, t2♢)

is
extended with

(⟨(1 : a1+ ♣ 2 : a2−)⟩, ¶t2, t3♢)

as they share two common vertices v1 and v2.

Methodological contributions 47

So we get a size-2 pattern
(⟨(1 : a1+ ♣ 2 : a1 + a2− ♣ 5 : a1−)(1 : a1+ ♣ 2 : a2−)⟩, ¶t1, t2♢)

.
We note that

(⟨(3 : a2− ♣ 4 : a1−)⟩, ¶t1, t2♢)

shares no common vertices with any set of
connected components of G2 and G3. Thus it can not be extended and it is added to set of
solutions. Other two size-1 patterns are extended in the same way, so we get:

(⟨(6 : a2− ♣ 11 : a1− ♣ 12 : a1−)(6 : a1 − a2− ♣ 11 : a1 − a2+ ♣ 12 : a1 − a2−)⟩, ¶t1, t2♢)

,
(⟨(8 : a1+ ♣ 9 : a1 + a2− ♣ 10 : a2+)(8 : a1+ ♣ 9 : a1 + a2−)⟩, ¶t1, t2♢)

.
We then calculate all sets of size-1 patterns from G3 and G4:
(⟨(6 : a1 − a2− ♣ 9 : a1 + a2−)⟩, ¶t3, t4♢)

,
(⟨(8 : a1 + a2− ♣ 10 : a1 − a2+ ♣ 11 : a1 − a2+ ♣ 12 : a1 − a2−)⟩, ¶t3, t4♢)

.
We extend the extracted size-2 patterns by verifying the temporal continuity constraint.

We notice that
(⟨(1 : a1+ ♣ 2 : a1 + a2− ♣ 5 : a1−)(1 : a1+ ♣ 2 : a2−)⟩, ¶t1, t2♢)

shares
no common vertices with any connected component sets of G3 and G4, so it can not be
extended and is added to the solution set. For another size-2 pattern

(⟨(6 : a2− ♣ 11 : a1− ♣
12 : a1−)(6 : a1 − a2− ♣ 11 : a1 − a2+ ♣ 12 : a1 − a2−)⟩, ¶t1, t2♢)

, the following two size-1
patterns generated from G3 and G4 lead to this pattern satisfying the temporal continuity
constraint:

(⟨(6 : a1 − a2− ♣ 9 : a1 + a2−)⟩, ¶t3, t4♢)

,
(⟨(8 : a1 + a2− ♣ 10 : a1 − a2+ ♣ 11 : a1 − a2+ ♣ 12 : a1 − a2−)⟩, ¶t3, t4♢)

.
The Ąrst one shares one common vertex v6 and the second one shares two common

vertices v11 and v12. So two size-3 patterns are generated by those two extensions and we
get:

(⟨(6 : a2− ♣ 11 : a1− ♣ 12 : a1−)(6 : a1 − a2− ♣ 11 : a1 − a2+ ♣ 12 : a1 − a2−)(6 : a1 − a2− ♣
9 : a1 + a2−)⟩, ¶t1, t2♢)

,
(⟨(6 : a2− ♣ 11 : a1− ♣ 12 : a1−)(6 : a1 − a2− ♣ 11 : a1 − a2+ ♣ 12 : a1 − a2−)(8 : a1 + a2− ♣

10 : a1 − a2+ ♣ 11 : a1 − a2+ ♣ 12 : a1 − a2−)⟩, ¶t1, t2♢)

.
Fig. 3.10 illustrates a detailed procedure for the extension of the size-1 pattern

(⟨(6 :
a2− ♣ 11 : a1− ♣ 12 : a1−)⟩, ¶t1, t2♢)

to the Ąnal solutions. In the same way,
(⟨(8 : a1+ ♣

9 : a1 + a2− ♣ 10 : a2+)(8 : a1+ ♣ 9 : a1 + a2−)⟩, ¶t1, t2♢)

is extended to generate two size-3
patterns verifying the temporal continuity constraint:

(⟨(8 : a1+ ♣ 9 : a1 + a2− ♣ 10 : a2+)(8 : a1+ ♣ 9 : a1 + a2−)(6 : a1 − a2− ♣ 9 :
a1 + a2−)⟩, ¶t1, t2♢)

,
(⟨(8 : a1+ ♣ 9 : a1 + a2− ♣ 10 : a2+)(8 : a1+ ♣ 9 : a1 + a2−)(8 : a1 + a2− ♣ 10 : a1 − a2+ ♣

11 : a1 − a2+ ♣ 12 : a1 − a2−)⟩, ¶t1, t2♢)

.
Fig. 3.10 shows all extracted solutions (common vertices are in red) beginning from

¶t1, t2♢ and satisfying user deĄned constraints mincos = 0, minvol = 2, minsup = 2,
mincon = 1 and gap = 1.

2.4 Algorithm RPMiner

This method is detailed in algorithm 4. Line 1 corresponds to the extraction of connected
components for each graph. Lines 3-7 construct size-1 patterns starting at time t1 whose
frequency are higher than the minimum threshold. For this purpose, the algorithm Ąrstly
calculates all time combinations T k

1 containing t1 (algorithm 4 line 5). Then it generates
size-1 patterns by performing intersections of connected components occurring at those times

48 2. Algorithm

Figure 3.9 Ű All solutions beginning from ¶t1, t2♢

(algorithm 4 line 5, method ExtractIntersect). This method has been detailed in algorithm 1.
Line 5 of algorithm 1 (detailed in algorithm 2) constructs candidate sets of size-1 patterns, i.e.
common sets of vertices CandV and common sets of edges CandE for each time combination
T . Next, Ąnal size-1 patterns are generated by Ąnding CandV having the same attribute
values (trends) in T (algorithm 1 line 6, detailed in algorithm 2). After that, the other times
are processed incrementally. For each time ti, RPMiner constructs all time combinations
T k

i containing ti (algorithm 4 line 12), and extracts size-1 patterns Pi from intersections
of connected components (algorithm 4 line 13). Then, it tries to extend each pattern P

generated in the previous iteration with those size-1 patterns (algorithm 4 lines 14-15).
If pattern P ′ resulting from the extension of P with Pi satisĄes the temporal continuity
constraint, it is added to the set of patterns generated at time ti (algorithm 4 lines 16-17).
Otherwise, P is added to the set of solutions, and Pi is saved for future extensions. In the
end (line 26), all solutions generated at each time are put together and associated times are
updated.

Fig. 3.11 depicts an example of algorithm execution with thresholds mincos = 0, minvol =
2, minsup = 2, mincom = 1 and gap = 1. The graph used is the example given in Fig. 3.2.

Methodological contributions 49

Algorithm 4: RPMiner : mining recurrent evolutions
Require: a dynamic attributed graph G, minsup: minimum frequency threshold, minvol: minimum volume

threshold, mincom: minimum number of common vertices over time, mincos: minimum similarity threshold, gap:

interval allowed between every two successive subgraphs

Ensure: Sol: set of evolutions satisfying the constraints

1: C = ¶Ci set of connected components of Gi ♣ ∀c ∈ Ci, c = (V, E, λ), ♣V ♣ ≥ minvol, ∀v ∈ V, ∃u ∈ V such that

cosine(v, u) ≥ mincos♢

2: Candi = ∅, ∀i ∈ ¶1, 2, ..., ♣T ♣♢

3: for k = minsup to ♣T ♣ do

4: T k
i

= ¶tj1
, ..., tjk

♣tj1
< tjk

and tj1
= ti♢

5: for each T ⊆ T k
1

do

6: Cand1 = Cand1 ∪ ¶P1 ∈ ExtractIntersect(C, T)♢

7: end for

8: end for

9: Soli = ∅, ∀i ∈ ¶1, 2, ..., ♣T ♣♢

10: for i = 1 + gap to ♣T ♣ do

11: for k = minsup to ♣T ♣ do

12: for each T ⊆ T k
i

do

13: for each Pi ∈ ExtractIntersect(C, T) do

14: for each P = (S, TP) such as P ∈ Candi−1 and TP = T do

15: P ′ = ExtendW ith(P, Pi)

16: if com(P ′) ≥ mincom then

17: Candi = Candi ∪ ¶P ′♢

18: else

19: Soli−1 = Soli−1 ∪ ¶P ♢

20: Candi = Candi ∪ ¶Pi♢

21: end if

22: end for

23: end for

24: end for

25: end for

26: end for

27: Sol = MergeUpdate(
⋃

∀i∈T
Soli)

To keep the Ągure readable, We only display vertices associated to each pattern (attributes
and times are omitted). At Ąrst, all size-1 patterns (column P1 in Fig. 3.11) containing
time t1 are constructed (their frequency is higher than minsup and their volume is higher
than minvol). Then, we extract all size-1 patterns starting at time t2 (column ”P1 + P2”

in Fig. 3.11). Next, we extend P1 with P2 by verifying the temporal continuity constraint
mincom. If they satisfy the constraint, they will be candidates for extension in the next
iteration (column ”P1 + P2 + P3” in Fig. 3.11). Otherwise, P1 is added to the set of solutions
and patterns of P2 are used for further extension. This processus continues until no more
extensions can be performed. As shown in Fig. 3.11, red bold patterns are Ąnal solutions as
they cannot be extended any more.

With this approach, a pattern will be generated and extended four times (from ¶t1, t2♢,
from ¶t1, t3♢, from ¶t2, t3♢, and from ¶t1, t2, t3♢). For each generation, pattern starting times
are updated. Notice that even if the processing of ¶t2, t3♢ and ¶t1, t2, t3♢ do not provide
any new information, it can lead to generation of other patterns. All those combinations
of intersections are thus necessary. That highlights the importance of our preprocessing to
guarantee the scalability of tour approach.

50 2. Algorithm

Figure 3.10 Ű Example of solutions

2.5 Algorithm time complexity and completeness

Complexity. To calculate time complexity for RPMiner, we frist consider the complexity
of one intersection of k graphs, where minsup ≤ k ≤ ♣T ♣. In the worst case, the complexity
of browsing vertices for all connected components of one graph is equal to ♣V ♣ + ♣E♣ (Alho
et al., 1987). To calculate all intersected connected components of k graphs, we perform two
by two intersections of graphs. It thus requires (k − 1) intersections of two graphs. So the
complexity related to intersections of k graphs is equal to (♣Vmax♣ + ♣Emax♣) ∗ 2 ∗ (k − 1),
where Vmax = ∪

t∈T
Vt and Emax = ∪

t∈T
Et. Then, we need to calculate common attributes for

each vertex of those intersected connected components, so the complexity of intersection of
k attributed graphs is: ♣A♣ ∗ (♣Vmax♣ + ♣Emax♣) ∗ 2 ∗ (k − 1).

Next, we calculate the total number of time combinations. In the worst case minsup = 1

and gap = 1, we have to process all time combinations. It equals to
∑♣T ♣

i=1(
♣T ♣
i). Then, we note

that for every time combination T ⊆ T k
i , we have to perform intersections i − 1 times. So,

the complexity of all intersection of graphs, denoted by ComIntersection, is ComIntersection =
∑♣T ♣

i=1(i−1)(
♣T ♣
i)∗2∗(♣Vmax♣+ ♣Emax♣)∗♣A♣ = ((♣T ♣−2)∗2♣T ♣−1 +1)∗2∗(♣Vmax♣+ ♣Emax♣)∗♣A♣.

51

Then we consider the complexity of extensions. In the worst case, the maximal number
of connected components extracted in a timestamp is ♣Vmax♣ (that is to say, each vertex is
a connected component). Thus, the maximal number of patterns that can be generated by
the successive extensions equals to ♣Vmax♣♣T ♣−1. As discussed above, the total number of time
combinations is

∑♣T ♣
i=1(

♣T ♣
i) = (2♣T ♣ − 1). Thus, the complexity of generating all extensions is

ComExtension = (2♣T ♣ − 1) ∗ ♣Vmax♣♣T ♣−1. Note that in practice, execution times of this part
of the algorithm are quite low thanks to volume and temporal continuity constraints.

Based on the complexity of all graph intersections and the complexity of all extensions of
patterns, the complexity of our algorithm is ComT otal = ComIntersection + ComExtension =

((♣T ♣ − 2) ∗ 2♣T ♣−1 + 1) ∗ 2 ∗ (♣Vmax♣ + ♣Emax♣) ∗ ♣A♣ + (2♣T ♣ − 1) ∗ ♣Vmax♣♣T ♣−1

Completeness.

The algorithm correctness and completeness can be justiĄed based on the properties of
graph intersections: (1) all patterns constructed from the intersection of minsup graphs of G
will satisfy the minimum frequency constraint; (2) all size-1 patterns satisfy non-redundancy
constraints. These two properties guarantee that our algorithm extracts the complete set
of size-1 patterns for each graph intersection. Furthermore, as mentioned in previous para-
graph, our algorithm generates all the possible time combinations. They guarantee that our
algorithm extracts the complete set of recurrent patterns.

Figure 3.11 Ű An example of execution of algorithm

52 3. Experimental results

3. Experimental results

The algorithm was implemented in C + +. Experiments were performed on PC with a
3.5GHz processor and 24 Gbytes of RAM. We used two real-world datasets and twenty syn-
thetic datasets for our tests.

3.0.1 Datasets

Synthetic datasets. Graph sequences were generated by varying different parameters such
as number of vertices per timestamp, number of attributes, number of edges and sequence
size. Algorithm 5 illustrates the synthetic datasets generation. Firstly, we create ♣G♣ graphs
(line 1 in algorithm 5). For each graph, we create ♣V ♣ vertices and then we associate each
vertex with ♣A♣ attributes following an uniform distribution. Then for each graph, we create
♣E♣ pairs of vertices (edges), based on an uniform distribution.

Algorithm 5: Generation of synthetic datasets
Require: ♣V ♣: number of vertices per graph, ♣E♣: number of edges per graph, ♣A♣: number of attributes per vertex,

♣G♣: number of graphs, MaxValue: max value of attribute

Ensure: G: an attributed dynamic graph

1: for i = 1 to ♣G♣ do

2: Create Gi = (V, E, λ), V = ∅, E = ∅

3: for j = 1 to ♣V ♣ do

4: Create vj , vj ∈ V

5: for k = 1 to ♣A♣ do

6: ak=UniformDistribution(MaxValue), ak ∈ λ(vj)

7: end for

8: end for

9: for l = 1 to ♣E♣ do

10: el = (vy , vy′), vy ∈ V, vy′ ∈ V, y = UniformDistribution(♣V ♣), y′ = UniformDistribution(♣V ♣)

11: end for

12: end for

DBLP dataset. This dataset used in (Desmier et al., 2012) represents DBLP authors
and their co-publications between 1990 and 2009. This period is divide into 9 timesteps
([[1990-1993][1992-1995]...[2006-2009]) where each timestep depicts co-authorship relation-
ships and authorsŠ number of publications over 4 years. Vertices represent authors who
published more than 10 papers. Edges exist between authors who published at least one
paper together during this period. Each vertex is labeled by 43 attributes representing the
number of publications in 43 different conferences and journals belonging to the Data Min-
ing and Databases communities. The dataset is composed of 2,723 vertices per timestamp
(authors), 10,737 edges in average (co-publications), 43 attributes (a set of selected confer-
ences/journals) and 9 timestamps ([1990-1993][1992-1995]...[2006-2009]).

Methodological contributions 53

Domestic US Flight dataset. This dataset used in (Kaytoue et al., 2014) repre-
sents airport traffic in the US during the Katrina hurricane period (from 01/08/2005 to
25/09/2005). Hurricane Katrina was an extremely destructive and deadly tropical cyclone.
It was also one of the costliest natural disasters and one of the Ąve deadliest hurricanes in
the the United States history. The aim is to study the impact of Katrina hurricane on the
US Ćights. Vertices represent US airports, each edge links two airports having at least one
Ćight between them. Each vertex is associated to a set of attributes depicting traffic aspects
(number of departures/arrivals, number of canceled Ćights, number of Ćights whose desti-
nation airport has been diverted, mean delay of departure/arrival and ground waiting time
departure/arrival). Instead of using numeric values of attributes, we calculate the trend for
each attribute over time, i.e. +,- and =, which mean that a value increases, decreases or
remains constant over two consecutive timestamps. To summarize, DBLP dataset is com-
posed of 280 vertices per timestamp (airports), 1206 edges in average (Ćight connections), 8
attributes and 8 timestamps (data is aggregated by weeks).

3.0.2 Quantitative Results

Impact of number of vertices and edges Fig. 3.12, Fig. 3.13 and Fig. 3.14 present exe-
cution times, number of solutions and maximum memory usage for twelve synthetic datasets
with a growing number of vertices and edges (number of attributes is set to 50 and number
of timestamps to 8). It can be noticed that our algorithm remains efficient when analyzing
sequence consisting of 20000 vertices per graph and per date, with a very small minsup (2).

Impact of number of timestamps Fig. 3.15, Fig. 3.16 and Fig. 3.17 show the impact of
number of timestamps on our algorithm. We can observe that execution times, number of
solutions and maximum memory usage increase exponentially with regard to the number of
timestamps. This impact is gigh because we browse all combinations of graph intersections.

Impact of number of attributes Fig. 3.18, Fig. 3.19 and Fig. 3.20 show the impact
of attribute number. As we can see, execution time increases linearly according to the
number of attributes. RPMiner could process up to 1000 attributes per vertex, therefore
permitting to model complex data. We can notice that RPMiner scales well on synthetic
data according to number of vertices, number of edges and number of attributes, while the
execution time increases exponentially w.r.t. number of graphs (timestamps).

Impact of mincos Fig. 3.21 reports the performance of RPMiner on synthetic data
when varying the parameter mincos (minimum similarity threshold). We can observe that
number of solutions and execution time increase quickly when mincos is set to 0.2. It is
because many big connected components are divided into smaller connected components
which are more cohesive (whose vertices share more common neighbors). However, when
mincos keeps on increasing, we remark that the number of solutions decreases sharply,

54 3. Experimental results

Figure 3.12 Ű Impact of number of vertices and edges per graph on the execution time
(synthetic data)

Figure 3.13 Ű Impact of number of vertices and edges per graph on the number of solutions
(synthetic data)

because there are much less connected components which are strongly cohesive (most of
vertex neighbors in a given connected component are the same).

Methodological contributions 55

Figure 3.14 Ű Impact of number of vertices and edges per graph on the memory (synthetic
data)

Figure 3.15 Ű Impact of number of graphs (timestamps) on the execution time (synthetic
data)

56 3. Experimental results

Figure 3.16 Ű Impact of number of graphs (timestamps) on the number of solutions (synthetic
data)

Figure 3.17 Ű Impact of number of graphs (timestamps) on the memory (synthetic data)

Impact of minsup We also study the performance of RPMiner on synthetic data and
DBLP dataset w.r.t. different frequency thresholds. As shown in Fig. 3.22, the frequency

Methodological contributions 57

Figure 3.18 Ű Impact of number of attributes per vertex on the execution time (synthetic
data)

Figure 3.19 Ű Impact of number of attributes per vertex on the number of solutions (synthetic
data)

58 3. Experimental results

Figure 3.20 Ű Impact of number of attributes per vertex on memory (synthetic data)

Figure 3.21 Ű Impact of mincos on the number of solutions and the execution time (synthetic
data)

constraint permits to signiĄcantly reduce execution time and number of solutions. It is due
to the fact that only the intersection of no less than minsup graphs are performed, which

Methodological contributions 59

completely depends on the minimum frequency threshold. As shown in Fig. 3.23, RPMiner

is still efficient on this real-world dataset (e.g. DBLP dataset) even for low thresholds.

Figure 3.22 Ű Impact of minsup on the number of solutions and the execution time (synthetic
data)

Impact of minvol Fig. 3.24 shows performance on synthetic data w.r.t. different volume
thresholds. The impact of volume threshold is quite signiĄcant. Indeed we can observe that
this constraint has an effective impact on patterns whose volume is less than 15 while it has
barely any effect on patterns larger than 15. This is because there exists numerous small
connected components (composed of less than 15 vertices) whereas there are a few groups
composed of more than 15 vertices.

Fig. 3.25 shows performance on DBLP dataset w.r.t. different volume thresholds. We
can observe that this constraint has an effective impact on the patterns whose volume is
less than 5 while it has barely any effect on the patterns larger than 5. This is because
there exists a great number of small groups of authors working together (composed of 2 or
3 authors) while there are only few groups composed of more than 10 authors.

Impact of mincom Fig. 3.26 shows performance on synthetic data w.r.t. different
mincom thresholds. Impact of this threshold is less important compared with frequency
and volume. We can observe that this constraint has an effective impact on patterns whose
mincom is less than 5 whereas it has barely any effect on patterns larger than 5. This is
because most of patterns evolve around a common core of less than 5 vertices while there
are much fewer groups evolving around a common core of more than 5 vertices.

60 3. Experimental results

Figure 3.23 Ű Impact of minsup on the number of solutions and the execution time (DBLP
dataset)

Impact of gap Finally, we study RPMiner performance on synthetic data w.r.t. different
gap thresholds. As shown in Fig. 3.27, impact of this threshold is very important. We can
observe that number of solutions and execution time drop by half when the gap threshold
varies from 1 to 4. This is because we divided by two the number of studied timestamps.

3.0.3 Qualitative interpretation

DBLP dataset We have also carried out a qualitative analysis of patterns extracted from
real-world dataset DBLP. For this experiment, parameters were Ąrstly set to minvol = 2,
minsup = 2, gap = 1 mincos = 0 and mincom = 2. Fig. 3.28 shows an example of pattern
extracted in the that data:

(

⟨(Henry Tirri: KDD, ICML ♣ Petri Myllymaki: KDD, ICML)

(Henry Tirri: KDD, IntellDtAnal ♣ Petri Myllymaki: KDD, IntellDtAnal)

(Henry Tirri: ECMLPKDD ♣ Petri Myllymaki: ECAI) ⟩, ¶[90 − 93], [94 − 97]♢
)

.
Here, vertex attributes are the names of different conferences and journals which signify

the corresponding authors published at least one article in this conference or journal during
the period under consideration. The pattern depicts the evolution of a co-author network of
Henry Tirri and Petri Myllymaki. This is a sequence of size 4 which represents an evolution
over 3 timestamps. This sequence is repeated twice. First from 1990 to 2005 (i.e. timesp-
tamps [90-93], [96-99] and [02-05]) and second from 1994 to 2009 (i.e. timesptamps [94-97],
[00-03] and [06-09]).

Methodological contributions 61

Figure 3.24 Ű Impact of minvol on the number of solutions and the execution time (synthetic
data)

Figure 3.25 Ű Impact of minvol on the number of solutions and the execution time (DBLP
dataset)

62 3. Experimental results

Figure 3.26 Ű Impact of mincom on the number of solutions and the execution time (synthetic
data)

Figure 3.27 Ű Impact of gap on the number of solutions and the execution time (synthetic
data)

Methodological contributions 63

Figure 3.28 Ű First pattern extracted from DBLP with the parameters minvol = 2, minsup =

2, gap = 1 mincos = 0 and mincom = 2

This pattern shows preferences of co-authors Henry Tirri and Myllymaki over time. Be-
tween 1990 and 1993, they published together in KDD and ICML conferences. Then, from
1996 to 1999, besides KDD, they also succeeded in publishing articles together in IntellD-
tAnal. Between 2002 and 2005, Henry Tirri published in ECMLPKDD and Myllymaki
published in ECAI proceedings. This recurrent pattern appears another time (from 1994
to 2009). RPMiner permits to extract all evolutions in co-author networks. However, when
we set mincos to 0 (i.e. we only take into account the connectivity constraint), we could
extract some patterns which describe evolutions of very large and sparse co-author networks
(a network of more than 50 authors) where most of authors do not have direct co-authorship.
It is difficult to interpret the evolution of such a big network because it may be composed of
several smaller groups of co-authors. For this purpose, here we set mincos to a rather high
value to focus on evolutions of cohesive and dense groups of co-authors (connected vertices),
that work closely together.

So parameters were then set to minvol = 2, minsup = 2, gap = 5 mincos = 0.4 and
mincom = 2. As shown in Fig. 3.29, an example of pattern extracted from DBLP dataset is

(

⟨(W eiyiMeng : IEEET ransKnowlDtEn, ICDE ♣ ClementT.Y u : IEEET ransKnowlDtEn, ICDE)

(W eiyiMeng : IEEET ransKnowlDtEn, CIKM, V LDB, KnowlInfSyst, V LDBJ, SIGMOD, DataKnlEng ♣

ClementT.Y u : IEEET ransKnowlDtEn, CIKM, V LDB, KnowlInfSyst, V LDBJ, SIGMOD, DataKnlEng ♣

AnHaiDoan : SIGMOD)

⟩, ¶[90 − 93], [94 − 97]♢
)

.

This pattern describes the evolution of Weiyi Meng and Clement T. Yu co-author net-

64 3. Experimental results

work. This is a sequence of size 2 which represents an evolution over 2 timestamps. This
sequence is repeated twice, Ąrst from 1990 to 2003 (i.e. timesptamps [90-93] and [00-03]),
and then from 1994 to 2007 (i.e. timesptamps [94-97] and [04-07]). This pattern describes
evolution of a group of authors over time at co-authorship level. Between 1990 and 1997,
only Weiyi Meng and Clement T. Yu worked together. Then, from 2000 to 2007, we observe
that their co-author network became bigger with Weiyi Meng joining their team. On the
other hand, this pattern highlights evolutions of their publications over time. We can see
that between 1990 and 1993, Weiyi Meng and Clement T. Yu published together only in
two conferences IEEETransKnowlDtE and ICDE. Then, from 2000 to 2003, besides EEE-
TransKnowlDtEn, Weiyi Meng and Clement T. Yu had much more publications together in
other conferences, i.e. CIKM, VLDB, KnowlInfSyst, VLDBJ and DataKnlEng. In addition,
we can notice that Weiyi Meng and Clement T. Yu published together with Weiyi Meng in
SIGMOD conference. This pattern appears another time (from 1994 to 2007).

Figure 3.29 Ű Second pattern extracted from DBLP with the parameters minvol = 2,
minsup = 2, gap = 5 mincos = 0.4 and mincom = 2

Then we change the parameter gap to 3 to study the evolution of the same group of
co-authors Weiyi Meng and Clement T.Yu. As shown in Fig. 3.30, we obtain the pattern

(

⟨(Weiyi Meng: IEEETransKnowlDtEn, ICDE ♣ Clement T.Yu: IEEETransKnowlDtEn, ICDE ♣ Won

Kim: ICDE ♣ Son Dao: ICDE)

(Weiyi Meng: IEEETransKnowlDtEn, CIKM, VLDB, VLDBJ ♣ Clement T.Yu: IEEETransKnowlDtEn,

CIKM, VLDB, VLDBJ ♣ King-Lup Liu: CIKM)

(Weiyi Meng: ICDE, CIKM, VLDB, SIGMOD, DataKnlEng ♣ Clement T.Yu: ICDE, CIKM, VLDB,

Methodological contributions 65

SIGMOD, DataKnlEng ♣ AnHai Doan: SIGMOD ♣ A. Prasad Sistla: ICDE ♣ Abdur Chowdhury: SIGMOD ♣

Fang Liu: SIGMOD)⟩, ¶[90 − 93], [94 − 97]♢
)

.

Figure 3.30 Ű Third pattern extracted from DBLP with the parameters minvol = 2,
minsup = 2, gap = 3 mincos = 0.4 and mincom = 2

With a gap threshold of 3, the pattern highlights publication evolution of this co-author
network in a shorter term. This sequence of size 3 represents an evolution over 3 timestamps.
It is repeated two times from 1990 to 2005 (i.e. timesptamps [90-93],[96-99] and [02-05]) and
from 1994 to 2009 (i.e. timesptamps [94-97], [00-03] and [06-09]). Firstly, we analyse the
evolution of this group of authors at co-authorship level, we can see that at Ąrst Weiyi
Meng and Clement T. Yu worked together with two authors Won Kim and Son Dao. Then,
they changed their co-authorship by publishing with King-Lup Liu. From 2002 to 2009,
they did not publish with King-Lup Liu any more and began to work with AnHai Doan, A.
Prasad Sistla, Abdur Chowdhury and Fang Liu. In addition, we can focus on the evolution
of their publications in different conferences/journals over time. Between 1990 and 1993,
Weiyi Meng and Clement T. Yu published with Won Kim and Son Dao in ICDE conference.
Besides, they also published together in IEEETransKnowlDtEn. Then from 1996 to 1999,
Weiyi Meng and Clement T. Yu produced much more articles together, they published in
IEEETransKnowlDtEn, VLDB and VLDBJ. They also published an article in CIKM with
King-Lup Liu. From 2002 to 2005, this pair of co-authors continued to publish together in
CIKM and VLDB conferences. Besides, they also published with A. Prasad Sistla in ICDE
and co-authored with AnHai Doan, Abdur Chowdhury and Fang Liu in SIGMOD conference.
This pattern also appears another time (from 1994 to 2009).

Fig. 3.31 depicts another example of pattern

66 3. Experimental results

(

⟨(Myoung-Ho Kim: DEXA, DASFAA, CIKM ♣ Jae Soo Yoo: DEXA ♣ Yoon-Joon Lee: DEXA, DASFAA

♣ Jae-Woo Chang: DEXA)

(Myoung-Ho Kim: DASFAA, DataKnlEng ♣ Jae Soo Yoo :DASFAA, DataKnlEng ♣ Yoon-Joon Lee:

DASFAA)

(Myoung-Ho Kim: JIntellInfSys ♣ Jae Soo Yoo : JIntellInfSys)⟩, ¶[90 − 93], [94 − 97]♢
)

with thresholds minvol = 2, minsup = 2, gap = 3 mincos = 0.5 and mincom = 2. This
pattern depicts the evolution of a co-author network for Myoung-Ho Kim and Jae Soo Yoo.
This is a size 3 sequence which represents an evolution over 3 timestamps. This sequence is
repeated twice: once from 1990 to 2005 (i.e. timesptamps [90-93], [96-99] and [02-05]) and
again from 1994 to 2009 (i.e. timesptamps [94-97], [00-03] and [06-09]). Firstly, we analyse
the evolution of this group of authors over time at co-authorship level. We can observe that
at Ąrst, Myoung-Ho Kim and Jae Soo Yoo worked together with Jae-Woo Chang. Next, they
changed their co-authorship by publishing together with Yoon-Joon Lee. Then, they did not
publish with Yoon-Joon Lee any more. Regarding the evolution of their publications in
different conferences/journals over time, we can make the following remarks. Between 1990
and 1993, Myoung-Ho Kim,Jae Soo Yoo, Jae-Woo Chang and Yoon-Joon Lee published
together in DEXA. Besides, Myoung-Ho Kim and Yoon-Joon Lee co-authored in DASFAA.
Then between 1996 and 1999, Myoung-Ho Kim, Jae Soo Yoo and Yoon-Joon Lee published
together in DASFAA. Moreover, Myoung-Ho Kim and Jae Soo Yoo had publications in
DataKnlEng. From 2002 to 2005, Myoung-Ho Kim and Jae Soo Yoo published together in the
JIntellInfSys journal. This pattern also appears again (from 1994 to 2009). It shows Myoung-
Ho Kim and Jae Soo YooŠs preference of conferences/journals as well as their publication
strategy. Overall we could notice that researchers often Ąrstly publish articles in conferences,
and then publish their work in journals later.

Discussions on results of DBLP dataset Here we compare our results with patterns
extracted in (Desmier et al., 2012). Firstly, RPMiner extracts all possible evolutions of
subgraphs (connected components). In the preprocessing stage, we extract more than 100
connected components from the Ąrst graph, where each component represents a co-authors
network. That means there are at least more than 100 different network evolutions. However,
(Desmier et al., 2012) can extract maximum 12 co-evolution patterns which depict only 12
different co-evolutions of co-author networks. It is because (Desmier et al., 2012) consider
only evolution of the same set of vertices over time. In comparison, RPMiner extracts all
possible evolutions (more than 9000 recurrent patterns) of different components (co-author
networks) because we consider evolutions of different vertices. For example, new co-authors
can join a group or previous co-authors may no longer publish together. Secondly, we can
notice that co-evolution patterns focus only on patterns having the same attributes over
time. However, for DBLP dataset and many other real world datasets, attributes may also
change over time. For example, the trend of authorsŠ publications number may evolve over
time. To summarize, our algorithm RPMiner breaks through these two main limits by
considering evolutions of both vertices and attributes.

US Flight dataset For the US Flight dataset, extracted patterns highlight the impact of
hurricanes on US airport traffic. Fig. 3.32 shows an example of pattern. This pattern shows

Methodological contributions 67

Figure 3.31 Ű Forth pattern extracted from DBLP with the parameters minvol = 2,
minsup = 2, gap = 3 mincos = 0.4 and mincom = 2

the impact of hurricanes on cancellation, diverted Ćights, mean delay of departure/arrival
and ground waiting time departure/arrival. At Ąrst, cancellations, diverted Ćights and delays
increased. Then, cancellations diverted Ćights and delays decreased the following week when
the hurricane became weaker. We can observe that this pattern occurred three times: [08/08-
15/08], [22/08-29/08] and [05/09-12/09] which does not correspond to the period of Category
5 Katrina hurricane (as shown in Fig. 3.35), i.e., from 23/08 to 31/08). Actually just before
Katrina hurricane, a category 2 hurricane called Irene (as shown in Fig. 3.34) hit the East
Coast of United States from 04/08 to 18/08. Moreover, just after Katrina hurricane, another
category 1 hurricane, called Ophelia (as shown in Fig. 3.36), reached in the East Coast
of United States from 06/09 and disappeared on 17/09. These three periods correspond
exactly to the pattern beginning times and we could notice that all hurricanes stronger
than category 1 could result in the cancellations and delays of Ćights. Their inĆuences
decrease when hurricanes become weaker. For readability of extracted patterns, we repost
its description in Table 3.1 of which Ąrst column represents name of airport, the following
columns represent attributes trends is consecutive time steps. If a table cell is empty, it
means that corresponding airport is not included in this connected component (a set of
airports connected by Ćights). As we can see in Fig. 3.33, this pattern contains 13 airports
(in blue) all over the United States where 10 over 13 airports are located in the East Coast
of United States (region strongly affected by the three hurricanes). The other three airports

68 3. Experimental results

(Providence, Reno and Rochester) are located in the West Coast of United States (far away
from the region strongly affected by Irene hurricane). However, these three airports were
also affected by these hurricanes. As we can see from Table 3.1, the canceled Ćights (from
airport Providence and airport Rochester to East Coast airports) increased in the Ąrst week.
It is probably because the hurricanes were too strong in the destinations that they have to
cancel the Ćights in the airports of departure.

Table 3.1 Ű First recurrent pattern extracted from US Flight dataset

Airport First time step Second time step
Pittsburgh Canceled+, Diverted=, Waiting-

TimeArrival+
Canceled=, Diverted-, Waiting-
TimeDeparture=

Portland Canceled+, DelayDeparture+ DelayDeparture-,
WaitingTimeDeparture-

Bend/ Red-
mond

Canceled=, Diverted=, Waiting-
TimeDeparture=, WaitingTimeAr-
rival=

Diverted=, WaitingTimeDepar-
ture=

Raleigh/
Durham

DelayArrival-, WaitingTimeArrival-

Richmond Diverted=, DelayDeparture+ WaitingTimeDeparture=
Roanoke Diverted=, DelayDeparture+
Savannah Canceled+, DelayArrival+
Louisville Diverted=
San Diego Diverted=
Shreveport Diverted= Diverted=, DelayDeparture-
Providence Canceled+, Diverted=, Waiting-

TimeDeparture+
Diverted-, WaitingTimeDepar-
ture=, WaitingTimeArrival-

Reno WaitingTimeDeparture=, Waiting-
TimeArrival=

Rochester Canceled+

Fig. 3.37 shows another example of pattern. This pattern shows the impact of hurricanes
on canceled/diverted Ćights and delays. First, the number of canceled Ćights and delays
increased at these airports. Then, cancellations and delays decreased the following week
when the hurricane became weaker. This pattern occurred at the beginning of August and
then again at the beginning of September, because there were two hurricanes during this
period. As we can see in Fig. 3.38, this pattern contains 11 airports (in blue) all over the
United States where 9 over 11 airports are located in the East Coast of United States which is
the region strongly affected by Irene hurricane and Ophelia hurricane. The other two airports
Medford and Minot (located far away from East Coast of United States) were also affected
by the hurricanes. Moreover, we note also that cancellations and delays increased when
hurricanes came, while diverted Ćight remained always the same. It shows that hurricanes
have strong impact on cancellations but have hardly impact on diverted Ćight. It may

Methodological contributions 69

Figure 3.32 Ű First pattern extracted from Domestic US Flight dataset with the parameters
minvol = 2, minsup = 2, gap = 1 mincos = 0.4 and mincom = 2. C: cancellation, D:
diverted Ćights, DD: the mean delay of departure, DA: the mean delay of arrival, WD: the
ground waiting time departure, WA: the ground waiting time arrival

Figure 3.33 Ű First pattern extracted from Domestic US Flight dataset with the parameters
minvol = 2, minsup = 2, gap = 1 mincos = 0.4 and mincom = 2

be due to the following three reasons: (1) Delays and cancellations are the most frequent
result of this disruptive event. For the airlines, these are the least damaging in terms of

72 3. Experimental results

Table 3.2 Ű Second recurrent pattern extracted from US Flight dataset

Airport First time step Second time step
New York Canceled+, Diverted=, DelayDe-

parture+, DelayArrival+, Waiting-
TimeDeparture+, WaitingTimeAr-
rival+

Canceled-, Diverted=,
DelayDeparture-,
WaitingTimeDeparture-

Orlando Diverted=, DelayDeparture+, De-
layArrival+, WaitingTimeArrival+

Diverted=, DelayDeparture-,
DelayArrival-

Chicago Diverted=, DelayDeparture+, De-
layArrival+, WaitingTimeArrival+

DelayDeparture-, DelayArrival-,
WaitingTimeDeparture-

Meridian Canceled+, DelayDeparture+, De-
layArrivals+, WaitingTimeDepar-
ture=, WaitingTimeArrival+

Canceled=, Diverted-

Medford Canceled=, Diverted=, Delay-
Departures+, DelayArrivals+,
WaitingTimeDeparture=, Waiting-
TimeArrival+

Diverted=, WaitingTimeDepar-
ture=, WaitingTimeArrival-

Montgomery Diverted=, DelayDeparture+,
WaitingTimeDeparture=

WaitingTimeDeparture=, Waiting-
TimeArrival=

Miami Canceled+, DelayDeparture+,
DelayArrival+, WaitingTimeDe-
parture=, WaitingTimeArrival+

Diverted-, DelayDeparture-, Wait-
ingTimeDeparture=

Moline Canceled+, Diverted=, Waiting-
TimeArrival=

Diverted=

Monroe Diverted=, DelayDeparture+, De-
layArrival+

Diverted=

Minot Diverted=, DelayDeparture+,
WaitingTimeDeparture=

Diverted=

Marquette Canceled= Canceled=, Diverted=,
DelayDeparture-

Methodological contributions 73

Figure 3.37 Ű Second pattern extracted from Domestic US Flight dataset with the parameters
minvol = 2, minsup = 2, gap = 1 mincos = 0.4 and mincom = 2. C: cancellation, D:
diverted Ćights, DD: the mean delay of departure, DA: the mean delay of arrival, WD: the
ground waiting time departure, WA: the ground waiting time arrival

Figure 3.38 Ű Second pattern extracted from Domestic US Flight dataset with the parameters
minvol = 2, minsup = 2, gap = 1 mincos = 0.4 and mincom = 2

74 3. Experimental results

Chapter 4

Application to spatio-temporal

data analysis

Contents

1 Problematic . 77

2 Data description . 78

3 Identification of aquaculture ponds 79

3.1 IUC Method . 80

3.2 RGT Method . 81

3.3 EDB Method . 82

3.4 Results . 83

4 Automatic identification of pond indicators 86

5 Image dataset transformation . 90

5.1 From cartographies to dynamic attributed graphs 90

5.2 From cartographies to sequential data 92

6 Pond evolution by sequential pattern mining 96

7 Pond evolution by graph mining 105

75

76

77

In this part, we propose to study a real-world problem in which we will use spatio-
temporal patterns to analyze trends and evolutions of interesting objects (aquaculture ponds).
This work was conducted in the framework of the "INDESO" project, which is dedicated to
developing tools and methods to better manage marine and coastal resources in Indonesia.
This project is Ąnanced by the Indonesian Ministry of Marine Affairs and Fisheries (KKP)
and coordinated by CLS (Collecte Localisation Satellites). This work was done in collabo-
ration with Niken Financia GUSMAWATI (as a part of her thesis), and Hugues Lemonnier
and Benoit Soulard of the LEAD/IFREMER team .

In that context, we developed a complete KDD process (Fig. 4.1): from pre-processing to
visualization and interpretation of results. In that task, input data is composed of a satellite
image time series crossed with ground truth data generated by experts.

The data preparation step required a major contribution and use of image analysis meth-
ods. Depending on objects to be detected, identiĄcation of interesting objects to analyse
could be very complex and require to adapt the most efficient segmentation methods.

In the data mining step, we have chosen two types of pattern domains:

1. Sequential patterns, which permit to describe frequent or rare temporal evolutions of
objects without taking account relations between objects.

2. Our method RPMiner. It permits to mine recurrent patterns in a dynamic attributed
graph. This new pattern domain allows to efficiently study recurrent evolutions of a
set of objects which are closely connected.

Image data transformation is necessary for the data mining phase. On the one hand, it
permits to transform information, i.e. temporal images extracted by object identiĄcation and
calculation of their characteristics, into transactional data when using sequential patterns.
On the other hand, it allows to construct a sequence of attributed graphs representing objects,
their spatial relationships and their characteristics.

The pattern visualization phase (sequential and recurrent patterns) occurs naturally in
images, by identifying objects and following their evolution. This step provides to experts
with the possibility to choose a pattern from the list of extracted patterns, and and visualizes
objects (in images by date) corresponding to that pattern evolution.

1. Problematic

In the past few years, IndonesiaŠs production in shrimp farming sector has experienced strong
growth due to large expansion of areas. This activity contributes to the national income and
optimize food security. However, its development has generated negative ecological and social
effects. As consequences of diseases and environmental degradations, 250,000 ha of ponds
have been abandoned. Sustainable practice in aquaculture farming is thus a high priority for
the Indonesian government, in order to reduce those impacts. Consequently, useful tools need

78

Figure 4.1 Ű Complete KDD process to study evolutions of aquaculture ponds

to be developed to improve aquaculture farming sustainability, coastal resource preservation
and human activity management.

We have contributed to this project by proposing automatic analysis tools integrated in
a complete KDD process. The objective is to monitor aquaculture pond evolution. Fig. 4.2
shows details of this KDD process. Firstly, we designed a process to provide a complete and
precise aquaculture mapping by segmenting and classifying satellite images. Secondly, we
developed methods to identify pond attributes (vegetation, water etc). Thirdly, we proposed
methods to transform this satellite image time series into sequential dataset and a dynamic
attributed graph. Next, we applied two different kinds of algorithms to study aquaculture
pond evolution: a sequential mining algorithm which aims to study temporal evolutions;
and our algorithm RPMiner which permits to study both spatial and temporal evolutions
of aquaculture ponds. Finally, we visualized results on original satellite images. When
interpreted results permit to describe, understand and manage shrimp farming.

2. Data description

The dataset is composed of fourteen very high-resolution images of Perancak estuary (located
in Bali province, Indonesia) taken between 2001 and 2015. Perancak estuary system is almost
5 km long and covers an area of approximately 1800 ha. It is located at northwest of Denpasar
in Bali Province. This area was chosen because it was a complex zone consisting of aqua-
culture ponds of various sizes and types. They included active shrimp ponds in traditional,
semi-intensive and intensive culture systems, abandoned shrimp ponds with water, without

79

Figure 4.2 Ű Complete process to study evolutions of aquaculture ponds

water, with natural vegetation and mangrove plantation conditions, Ąsh ponds, and polycul-
ture ponds (algae/Ąsh and shrimp). Those optical images came from Ąve different satellite
sensors, namely IKONOS (images acquired in 12/10/2001, 09/03/2002, 21/02/2003, and
27/06/2003), Quickbird (22/09/2007, 19/07/2008, and 09/07/2009),Worldview-2 (16/08/2010,
15/04/2011, 23/10/2012, 10/12/2013, and 26/03/2014), GeoEye-1 (11/10/2014), and Worldview-
3 (16/04/2015). Pixel size varied from 30 cm to 1m for panchromatic channels whereas
resolution of multispectral channels ranged between 1.2 and 4 m.

3. Identification of aquaculture ponds

An automatic precise, and efficient generation of maps is important for experts because (1) to
provide spatiotemporal information to decision support tools for sustainable Ąsheries policy,
(2) experts could use them to develop indicators to monitor and assess ecosystems (Revenga,
2005).

In this section, the objective is to identify aquaculture ponds and generate a correspond-
ing cartography by using segmentation and classiĄcation methods. (Burnett and Blaschke,
2003) proposed a segmentation and classiĄcation method using Object-Based Image Anal-
ysis (OBIA). This approach is particularly suitable for analyzing medium and high reso-
lution satellite images. Its mapping capability has been extended by incorporating spec-
tral, contextual, textural and shape information of homogenous pixel sets (Meinel et al.,

80 3. Identification of aquaculture ponds

2001; Shackelford and Davis, 2003; Blaschke, 2010). However, OBIA faces some challenges:
(1) within-class heterogeneity and irrelevant features may increase classiĄcation uncertainty
(Kim et al., 2011; Chettri et al., 2013; Dronova et al., 2015).(2) OBIA classiĄcation can
hardly detect and delineate Ąne-scale elements even for very high resolution satellite images
(Yoshino et al., 2014).

On the other hand, traditional Pixel-Based Image Analysis (PBIA) has encountered
issues with high-resolution imagery, resulting in Ša salt and pepper appearanceŠ that leads
to very general land cover information, or limited accuracy in thematic maps (Zhu et al.,
2000).

In the present work, two segmentation and classiĄcation methods were Ąrstly applied to
build the cartography of ponds (Gusmawati et al., 2016): (1) Region Growing Segmentation
algorithm followed by ISOSEG unsupervised classiĄcation method (RGT) implemented in
SPRING software and (2) Isocluster Unsupervised ClassiĄcation method (IUC) implemented
in ArcGIS software. RGT method, which has been widely used in many remote sensing ap-
plications, can extract closed contours (Espindola et al., 2006). It permits to extract water
surface and pond embankment limits (Virdis, 2014). IUC has been used to classify aquacul-
ture zones and generate aquaculture farm cadastre (Hossain et al., 2002). However, these
existing methods could not provide an accurate mapping. Broken structure of embankments,
low contrast between soil and pond embankments in dried-up ponds, ongoing pond develop-
ment, abundance of algae as well as mangrove vegetation inside ponds made it difficult to
extract enclosed contours with high accuracy. To provide an accurate automatic mapping,
we proposed a method called Edge Detection Based (EDB) segmentation (Gusmawati et al.,
2016).

3.1 IUC Method

IUC is a segmentation and classiĄcation method composed of three steps:

Image pre-processing and classification After contrast enhancement, several classes
of land cover are identiĄed in the multi-spectral image using Iso Cluster, without knowledge
of class type. These classes are re-classiĄed into pond and non-pond (2 classes) to generate
two unique labels. Iso Cluster algorithm (K-means) is an iterative process that assigns each
candidate cell to a cluster based on the minimum Euclidean distance. The process starts
with arbitrary means, one for each cluster (users dictate the number of clusters). Every cell
is assigned to the cluster with the closest mean. Next, new means are recalculated for each
cluster, based on attribute distances of cells belonging to the cluster after the Ąrst iteration.
The process is repeated: each cell is assigned to the closest mean in multidimensional at-
tribute space, and new means are calculated for each cluster based on the new member cells.
After running the speciĄed number of iterations, the migration of cells from one cluster to
another is minimal; therefore, all the clusters become stable.

Automatic vectorization ArcScan, as an extension tool in ArcGIS, that provides auto-
matic vectorization. It is an of outline vectorization which generates vector polygon features
on raster cell borders.

Application to spatio-temporal data analysis 81

Post-vectorization refinement We can use other editing tools, such as topology, ad-
vanced editing, and spatial adjustment, to further reĄne vectorization results, whenever
necessary. For instance, several connected ponds which might appear in results could be
separated by manual editing.

Fig. 4.3 shows steps for aquaculture ponds detection using IUC method.

Figure 4.3 Ű Aquaculture ponds detection using IUC method

3.2 RGT Method

RGT a segmentation and classiĄcation method composed of four steps:

Image pre-processing and filtering The panchromatic image was spatially Ąltered by
a sliding kernel with one iteration, to enhance the contrast.

Image segmentation RGT method was performed with different similarity criteria and
minimum area (pixels) thresholds to achieve optimal segmented output. Similarity controls
grouping of similar pixels in a segment (region) while the minimum area threshold Ąlters
smallest segments (areas).

Image classification A clustering algorithm ISOSEG available in SPRING software (It-
erative Self Organizing Data Analysis Technique) allows to assign each image segment to
different classes. ISOSEG initially assigns the same class to all segments, and then reduces

82 3. Identification of aquaculture ponds

variability by creating new classes. Several thresholds values and various iteration numbers
are tested. ClassiĄcation output is converted into vector layers.

Post-vectorization refinement After classiĄcation and vectorization, manual reĄnement
using editing tools can be conducted using ArcGIS, as for IUC post-vectorization.

Fig. 4.4 shows steps for aquaculture ponds detection using RGT method.

Figure 4.4 Ű Aquaculture ponds detection using RGT method

3.3 EDB Method

EDB is an automatic method composed of four steps:

Image pre-processing and filtering Panchromatic image is Ąrstly Ąltered using a Gaus-
sian Ąlter to remove noise and obtain a smooth image.

Edge detection based segmentation and adaptive thresholds In this part, an im-
proved Canny edge detection method is employed to process the panchromatic image. Canny
algorithm introduces two thresholds, which allows signiĄcant adaptation to local content in
images. The higher threshold (Th) is calculated by Ostu method and the lower threshold
(T l) is determined by using Canny initial formula T l = 0.5Th, which guarantees contour
completeness and accuracy.

Pixel values above Th are classiĄed as edge whereas pixel values lower than T l are
discarded. Pixel value between those thresholds would be recognized as contours if they are
already connected to an accepted pixel already classiĄed as contour.

Application to spatio-temporal data analysis 83

Color based segmentation and image fusion For the purpose of extracting drained
ponds, a color classiĄcation using a color threshold of 90 is performed using Hue-Saturation-
Value (HSV) system. Segmented panchromatic and segmented multispectral images are then
merged to get a complete map of ponds.

Shape Recognition and Image Classification A shape recognition method is then
applied to Ąlter noise and other objects such as rivers and vegetation. An area threshold
ranging from 300 to 10,000 pixels has been used to identify aquaculture ponds. Moreover,
a shape factor (SF), derived from the ratio of perimeter to area showed promising results
in identifying aquaculture ponds based on their elongated shape (SF ≥ 1.2). Vectorization
was then conducted using ArcGIS tool.

Steps for aquaculture ponds detection using EDB method is shown in Fig. 4.5.

Figure 4.5 Ű Aquaculture ponds detection using EDB method

3.4 Results

To calculate the accuracy of the maps generated by different segmentation and classiĄcation
methods, a reference map is Ąrstly generated. It is composed of all pond boundaries which
were delineated manually according to Ąeld surveys. Then, the accuracy was calculated by

84 3. Identification of aquaculture ponds

using a confusion matrix and kappa agreement coefficient and the proportion of correctly
identiĄed ponds (Foody, 2004).

Fig. 4.6 shows results from the three segmentation and classiĄcation methods used to
generate an aquaculture map. As we can see, RGT method (upper right image) works well
in homogeneous high contrast areas (Region g) by producing closed polygons. However, other
areas such as dry ponds or low-level water ponds (region a region b and region f), as well as
all textured areas such as mangrove in abandoned ponds (Region d) are under-segmented.
Besides, RGT is not an automatic method and could not segment large images because it
extracts a large number of ponds whose contours are connected (region c and region e) which
requires a great amount of manual contour reĄnement.

Unsupervised classiĄcation implemented in IUC (bottom left image) provided a better
overall mapping. However, as RGT method, IUC also under-segment highly heterogeneous
areas (region a, region b and region d). Besides, pond connectivities are even more severe
(as shown in region c and in region e). It needs many manual reĄnements which makes it
impossible to provide a precise map.

As shown in Fig. 4.6 (bottom right image), EDB gave great results in all difficult situa-
tions. It permitted to detect and delineate ponds in heterogeneous and textured areas that
were hardly extracted by RGT and IUC. Moreover, it also solved the connectivity problem.
As we can see, EDB method provides the most precise maps.

Figure 4.6 Ű Aquaculture map obtained using three classiĄcation methods. Upper left image:
World View-2 image; Upper right image: RGT; Bottom left image: IUC; Bottom right image:
EDB. Region a:dry active pond; Region b: abandoned pond with young vegetation; Region
c, Region e and Region f: dry abandoned pond; Region d: watered active pond; Region g:
abandoned pond with mature vegetation

Application to spatio-temporal data analysis 85

Percentages of ponds identiĄed by RGT, IUC and EDB, are 62% (after manual contour
reĄnement), 81% (after contour manual reĄnement), and 96% (without manual contour
reĄnement), respectively (Table 4.1). EDB accuracy is thus the highest while other methods
could not provide a precise map even when followed by manual contour reĄnements. Accuracy
assessments of these three methods are shown in Table 4.2. EDB overall accuracy is 84%,
with a Kappa statistic of 0.68. As shown in this table, both of EDB accuracy and Kappa
statistic are higher than RGT and IUC.

Table 4.1 Ű The proportion of identiĄed and unidentiĄed aquaculture ponds

Aquaculture ponds RGT IUC EDB

IdentiĄed ponds (unit) 835 1091 1295
UnidentiĄed ponds (unit) 517 261 57

Proportion of ponds identiĄed (%) 62 81 96

Table 4.2 Ű Accuracy assessment for different methods

Classification Overall Accuracy (%) Kappa coefficient

RGT 65 0.3
IUC 77 0.54
EDB 84 0.68

Discussions on the results As shown in Fig. 4.6, RGT was hardly able to generate
complete ponds in heterogeneous areas. It could not locate object boundaries and edges
because neighboring pixels with same or similar values could not be clustered in the same
region. When over-segmentation occurred, the actual edge pixels might be joined to other
pixels in their neighborhood (Jain and Singh, 2011). The WV-2 image segmentation process,
which took more than 3 hours, made the operation and data handling more complicated,
while steps consisting of cadastre integration into map tasks were easily performed with an
external GIS software.

IUC could create a smooth cadastre of aquaculture ponds. A fast processing time and
integration with GIS spatial analysis added advantages to this method. That method de-
pends on spectral signature and statistical information in images, and users do not have
control over the clustering process. As an unsupervised classiĄcation method, IUC is not
sensitive to variation covariations in object spectral signature, especially in the case of the
low contrast images. That method could miss some ponds due to their connectivities which
inevitably lead to a lower map accuracy (Fraisse et al., 2001).

EDB approach achieves a high segmentation and classiĄcation accuracy. EDB overcomes
the limitations related to sensitivity to noise and low image contrast by using a Gaussian
Ąlter and Canny operator. It did not need manual reĄnement of contours and it could
improve segmentation accuracy in a signiĄcant manner.

86

The EDB approach possesses two key advantages over both IUC and RGT. Firstly, the
Canny operator improved by the Ostu method permits to improve segmentation accuracy by
effectively retaining details and slight borders of objects. Secondly, EDB approach considers
not only spectral properties but also shape features that provide a dominant factor for
classiĄcation.

4. Automatic identification of pond indicators

To study aquaculture pond evolution, we need to identify pond indicators. It is important
to provide information to support decision makers with regard to abandoned pond rehabili-
tation, at pond and ecosystem scales. For this purpose, (Gusmawati et al., 2017) identiĄed
four boolean criteria for aquaculture ponds by analysing satellite images: (1) presence of
water, (2) presence of vegetation, (3) presence of aerator(s), (4) presence of wooden feeding
bridge(s). Then they developed an activity indicator based on these four criteria to moni-
tor change in shrimp farm activity. However, it requires to perform systematic ground truth
surveys, which are tedious and very expensive. To overcome this issue, an automatic method
is needed to identify pond indicators on a large scale. As detailed next, we developed such
automatic methods.

To detect water in ponds, we used the normalized difference water index (NDWI) deĄned
by (Gao, 1996). NDWI is deĄned as follows:

NDWI =

Green−NIR
Green+NIR

where Green is reĆectance of the green wavelength band and NIR is the near-infrared
wavelength band reĆectance. This index is designed to (1) maximize water reĆectance by
using green wavelengths; (2) minimize the low reĆectance of NIR by water features; and
(3) take advantage of the high reĆectance of NIR by vegetation and soil features. So water
features having positive values are enhanced, while vegetation and soil usually have zero or
negative values and therefore are suppressed.

Then, we used a threshold of 0.5 to identify water indicator (Zhai et al., 2015). If the mean
NDWI value of a pond is greater than that threshold, that pond contains water. Otherwise,
there is no water in that pond. Fig. 4.7 shows ponds with water (in red) on one original
satellite image. The indicator accuracy (the ratio of correctly identiĄed ponds with water to
total number of ponds with water) is 96%.

Application to spatio-temporal data analysis 87

Figure 4.7 Ű IdentiĄcation of ponds with Water

To detect vegetation in ponds, we used the Landscape Normalized Difference Vegetation
Index (NDVI) which is Ąrstly proposed by (Tucker, 1979). The NDVI was deĄned as follows:

NDV I =

NIR−Red
NIR+Red

where NIR is the near-infrared wavelength band reĆectance and Red is the red wavelength
band reĆectance. It has been widely used to detect vegetation (Nouri et al., 2014; Nouri
et al., 2017; Alam et al., 2018). The mean NDVI value of vegetation areas is between 0.3
and 0.8 (Nouri et al., 2014).

Thus, we used a threshold between 0.3 and 0.8 to identify vegetation. If the mean NDVI
value for a pond is greater than 0.3 and less than 0.8, there is some vegetation in the pond.
Otherwise, there is no vegetation. Fig. 4.8 shows ponds with vegetation (in red) detected
by these thresholds. Accuracy of this indicator (ratio of correctly identiĄed ponds with
vegetation to the total number of ponds with vegetation) is 94%.

To detect pond aerators, we Ąrstly detect all the pond contours (Fig. 4.10) from original
image (Fig. 4.9), Then an area threshold ranging from 20 to 50 pixels was applied to Ąlter
other small and big objects which are not aerators. Fig. 4.11 shows the aerators extracted
from original image (Fig. 4.9). Accuracy (ratio of correctly identiĄed ponds with aerators to
total number of ponds with aerators)of this indicator is 96%.

88 4. Automatic identification of pond indicators

Figure 4.8 Ű IdentiĄcation of ponds with vegetation

Figure 4.9 Ű Original satellite image

Application to spatio-temporal data analysis 89

Figure 4.10 Ű Pond contour detection from Fig. 4.9

Figure 4.11 Ű Detected aerators in Fig. 4.9

Bridge indicator was identiĄed by analysing satellite images visually. It is hard to detect
pond bridge automatically, because as shown in Fig. 4.12, bridges are placed on dikes where
contrast is very low. Besides, their sizes are extremely small (about 0.5 − 1 m × 3 − 5m)
which makes it very difficult to identify bridges in ponds.

90

Figure 4.12 Ű Bridges of ponds

The activity indicator has been identiĄed by conducting Ąeld surveys and analyzing satellite
images visually (Gusmawati et al., 2017). In her thesis, she veriĄed that activity indicator
is closely related to other four criteria mentioned above.
In conclusion, we have identiĄed interesting objects which are aquaculture ponds spatially
located in satellite image. Each pond is depicted by four characteristics (indicators): pres-
ence of water, vegetation, aerator(s) and wooden feeding bridge(s). Those characteristics
discriminate ponds with activity and abandoned ponds.

5. Image dataset transformation

We transform images information into two data representations to analyze pond evolutions:
a dynamic attributed graph and sequential data. It allows to extract recurrent patterns and
frequent sequential patterns depicting pond evolution.

5.1 From cartographies to dynamic attributed graphs

Generation of vertices To generate vertices, we extract all the ponds in each satellite
image and save their id for each image. For example, as there are 1513 ponds in satellite
image for the Ąrst date, so the pond id in Ąrst image goes from 1 to 1513. However, as
ponds evolve over time, a pond could have different id in two consecutive images. As a
consequence, we need to Ąnd the temporal relationships of ponds in two consecutive images.
Firstly, we browse ponds in the Ąrst image. For every pond in this Ąrst image, we identify
all ponds in the second image that are intersected with it (having a common region). This
step permits to detect all Ąve possible pond evolutions: (1) fusion (several ponds correspond
to one pond), (2) division (one pond corresponds to several ponds), (3) appearance (zero
to one: zero pond corresponds to one pond), (4) disappearance (one to zero: one pond

Application to spatio-temporal data analysis 91

corresponds to zero pond) and (5) one-to-one (one pond corresponds to one pond). Then
we repeat this step for all the following 12 dated images. Table 4.3 shows evolutions of the
Ąrst 20 ponds. As we can see, this table is composed of 15 columns where the Ąrst column
displays Ąnal ids of ponds and the remaining 14 columns contain original pond ids in the 14
satellite images. Each row represents the evolution of one pond over 14 times. If a pond is
absent in an image, its id is set to "-1". Let us consider, for example, the pond in the Ąrst
row. We can notice that this pond is absent in the Ąrst image. Then it appears in the second
image with id 453. Next, it becomes pond 460 in the third image and pond 463 in the forth
image etc. Finally, we standardise the Ąrst pond id by assigning it the id "1" (in the Ąrst
column named "Final id"). To generate vertex attributes, we replace pond original ids by
their corresponding attributes. Table 4.4 shows attributes of the Ąrst 20 vertices, where the
Ąrst column presents the Ąnal id of ponds and the other columns represent the attributes
of ponds for each date (image). As we can see, each table cell is composed of Ąve numbers
representing the Ąve attributes of ponds: "1" for "No Aerator", "2" for "With Aerator", "3"
for "No Bridge", "4" for "With Bridge", "5" for "No Vegetation", "6" for "With Vegetation",
"7" for "No Water", "8" for "With Water", "9" for "No Activity", "10" for "With Activity". We
note that several table cells are composed of "-1". It represents that there are no attributes
for this pond, as it is absent in this image.

Generation of edges We create edges by considering spatial relationships of ponds (ver-
tices) in each image. For every pond in a given image, we deĄne a ROI (region of interest)
to calculate all its neighbors in this region. This ROI is a circle region whose center is the
pond center and its radius is equal to the MajorAxisLength, i.e., the major axis length (in
pixels) of the ellipse that has the same normalized second central moments as the region.
Then, we calculate the distance between this pond and every other aquaculture pond in this
ROI (region of interest). If the distance is less than a user deĄned threshold (50 pixels), we
create an edge between these two vertices (adjacent ponds). For example, Fig. 4.13 (right)
shows the circular ROI (red) for the pond with red contour in Fig. 4.13 (left). With this
ROI, we only need to calculate its possible neighbors in this region instead of considering all
the other ponds of the map.

We illustrate this transformation with an example. Fig. 4.14 shows 3 consecutive satellite
images (from 2011 to 2013). As we can see, from 2011 to 2012, pond 1 (in 2011) was divided
into pond 1 and pond 2 (in 2012), pond 2 (in 2011) was divided into pond 3 and pond 4
(in 2012). Then, from 2012 to 2013, pond 7 (in 2012) was divided into pond 7 and pond
8 (in 2013). Based on these temporal relationships between vertices (ponds), we can Ąrstly
construct all vertices. The Ąrst column of Table 4.5 shows the Ąnal ids of vertices and the
other columns represent their original id in each image. To generate the vertex attributes,
we only need to replace the original pond id in Table 4.5 by their corresponding attributes.
Table 4.6 shows all attributes of this graph. Then, we generate all edges for each image
(Table 4.7). Based on correspondences between the Ąnal id and the original id of ponds (as
shown in Table 4.5), we transform Table 4.7 by using the Ąnal pond ids to obtain the Ąnal
ids of edges (as shown in Table 4.8).

By using this method, we transform this 14 images time series into a dynamic attributed

92 5. Image dataset transformation

Figure 4.13 Ű Example of ROI

Table 4.3 Ű Rearrangement of pond id

graph. It is composed of 1915 vertices where vertices represent ponds, each vertex is as-
sociated to 10 attributes (WithActivity, WithoutActivity, WithBridge, WithoutBride, With-

Vegetation, WithoutVegetation, WithWater, WithoutWater, WithAerator, WithoutAerator).
Each edge links two ponds which are spatially adjacent. To summarize, this graph consists
of 1915 vertices (ponds), 4350 edges in average, 10 attributes and 14 timestamps. This
representation enables to study the spatio-temporal evolutions of ponds.

5.2 From cartographies to sequential data

To generate sequential data, we only have to use the Table 4.4 constructed in previous
step. Table. 4.9 shows the Ąrst 20 sequences generated from this dataset. As we can see,
this sequential data consists of 1915 sequences (ponds). Each sequence is composed of 14
itemsets in which each item describes one pond characteristic.

This data representation considers all kinds of temporal evolutions such as pond appearance,

Application to spatio-temporal data analysis 93

Table 4.4 Ű Attributes and vertices of dynamic attributed graph. -1: disappeared pond, 1:
No Aerator, 2: With Aerator, 3: No Bridge, 4: With Bridge, 5: No Vegetation, 6: With
Vegetation, 7: No Water, 8: With Water, 9: No Activity, 10: With Activity

Figure 4.14 Ű An example of ROI over 3 consecutive time (from to 2011 to 2013)

disappearance, fusion and division. For example, let consider the evolution of pond 5 in 2011
(Fig. 4.14). This pond (in 2011) was evolved to pond 7 (in 2012). Then, pond 7 (in 2012)
was divided into pond 7 (in 2013) and pond 8 (in 2013). Consequently, we generate two
sequences:
< ¶WAc, NB, NV, NW, NAe♢, ¶WAc, NB, NV, NW, NAe♢, ¶WAc, WB, NV, WW, NAe♢ >

(pond5 → pond7 → pond7) and
< ¶WAc, NB, NV, WW, NAe♢, ¶WAc, WB, NV, WW, NAe♢, ¶WAc, NB, NV, WW, NAe♢ >

(pond5 → pond7 → pond8).
Table 4.10 shows all the constructed sequences for this example (Fig. 4.14). We have to
notice that sequence mining algorithms could introduce biases to study such data (support of
extracted patterns could be higher than its real support). For example, let us consider the two
sequences generated above. Given a support threshold=2, one of the frequent sequences of
length 2 is < ¶WAc, NB, NV, WW, NAe♢, ¶WAc, WB, NV, WW, NAe♢ >. However, its real

94 5. Image dataset transformation

Table 4.5 Ű Vertices and attributes of dynamic attributed graph. WAc:WithActivity,
NAc:WithoutActivity, WB:WithBridge, NB:WithoutBridge, WV:WithVegetation,
NV:WithoutVegetation, WW:WithWator, NAc:WithoutWator, WAe:WithAerator,
NAe:WithoutAerator

Final id id in 2011 id in 2012 id in 2013
Pond1 Pond1 Pond1 Pond1
Pond2 Pond1 Pond2 Pond2
Pond3 Pond2 Pond3 Pond3
Pond4 Pond2 Pond4 Pond4
Pond5 Pond3 Pond5 Pond5
Pond6 Pond4 Pond6 Pond6
Pond7 Pond5 Pond7 Pond7
Pond8 Pond5 Pond7 Pond8

Table 4.6 Ű Vertices and attributes of dynamic attributed graph. WAc:WithActivity,
NAc:WithoutActivity, WB:WithBridge, NB:WithoutBridge, WV:WithVegetation,
NV:WithoutVegetation, WW:WithWator, NAc:WithoutWator, WAe:WithAerator,
NAe:WithoutAerator

Vertices Attributes (2011) Attributes (2012) Attributes (2013)
Pond1 WAc, NB, NV, WW, NAe WAc, WB, NV, WW, NAe WAc, NB, NV, NW, NAe
Pond2 WAc, NB, NV, WW, NAe WAc, WB, NV, WW, NAe WAc, WB, NV, NW, NAe
Pond3 WAc, WB, NV, WW, NAe WAc, WB, NV, WW, NAe WAc, WB, NV, WW, NAe
Pond4 WAc, WB, NV, WW, NAe WAc, WB, NV, WW, NAe WAc, WB, NV, WW, NAe
Pond5 WAc, WB, NV, WW, NAe WAc, WB, NV, WW, NAe WAc, WB, NV, WW, NAe
Pond6 WAc, WB, NV, WW, NAe WAc, WB, NV, WW, NAe WAc, WB, NV, WW, NAe
Pond7 WAc, NB, NV, NW, NAe WAc, NB, NV, NW, NAe WAc, WB, NV, WW, NAe
Pond8 WAc, NB, NV, NW, NAe WAc, NB, NV, NW, NAe WAc, NB, NV, WW, NAe

Table 4.7 Ű Set of edges of each image

Edges
2011 (1,2), (2,3), (2,4), (3,4), (4,5)
2012 (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (3,5), (3,6), (5,6), (5,7), (6,7)
2013 (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (3,5), (3,6), (5,6), (5,7), (6,7), (7,8)

support is just 1, because these two occurrences represent the same evolution pond5 → pond7.
To deal with this problem, we have to add a post-processing method to calculate the real
support of extracted patterns.

Application to spatio-temporal data analysis 95

Table 4.8 Ű Final set of Edges of dynamic attributed graph

Edges
2011 (1,3), (3,5), (3,6), (5,6), (6,7)
2012 (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (3,5), (3,6), (5,6), (5,7), (6,7)
2013 (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (3,5), (3,6), (5,6), (5,7), (6,7), (7,8)

Table 4.9 Ű Sequence data

Table 4.10 Ű Transformed sequential dataset

SID Sequence

1 < ¶WAc, NB, NV, WW, NAe♢, ¶WAc, WB, NV, WW, NAe♢, ¶WAc, BB, NV, NW, NAe♢ >

2 < ¶WAc, NB, NV, WW, NAe♢, ¶WAc, WB, NV, WW, NAe♢, ¶WAc, WB, NV, NW, NAe♢ >

3 < ¶WAc, WB, NV, WW, NAe♢, ¶WAc, WB, NV, WW, NAe♢, ¶WAc, WB, NV, WW, NAe♢ >

4 < ¶WAc, WB, NV, WW, NAe♢, ¶WAc, WB, NV, WW, NAe♢, ¶WAc, WB, NV, WW, NAe♢ >

5 < ¶WAc, WB, NV, WW, NAe♢, ¶WAc, WB, NV, WW, NAe♢, ¶WAc, WB, NV, WW, NAe♢ >

6 < ¶WAc, WB, NV, WW, NAe♢, ¶WAc, WB, NV, WW, NAe♢, ¶WAc, WB, NV, WW, NAe♢ >

7 < ¶WAc, WB, NV, WW, NAe♢, ¶WAc, NB, NV, NW, NAe♢, ¶WAc, WB, NV, WW, NAe♢ >

8 < ¶WAc, NB, NV, NW, NAe♢, ¶WAc, NB, NV, NW, NAe♢, ¶WAc, NB, NV, WW, NAe♢ >

96

6. Pond evolution by sequential pattern mining

Firstly, we use sequence mining algorithms (Srikant and Agrawal, 1996; Pei et al., 2004;
Fournier-Viger et al., 2008; Fournier-Viger et al., 2014) to study temporal evolutions of
aquaculture ponds. In this work, we choose the algorithm developed by (Fournier-Viger et

al., 2008) to study aquaculture data because it extracts closed subsequences and it integrates
Ąve useful constraints to Ąlter uninteresting patterns: (1) minimum support (minsup), (2)
minimum time interval allowed between two successive itemsets, (3) maximum time inter-
val allowed between two successive itemsets, (4) minimum time interval allowed between
the Ąrst and the last itemset of a sequential pattern (min_whole_interval) and (5) max-
imum time interval allowed between the Ąrst and the last itemset of a sequential pattern
(max_whole_interval). The second and third constraints are especially important and in-
teresting to study aquaculture pond evolution. Indeed, they permit to extract consecutive
evolutions of ponds. In addition, patterns extracted without those constraints could lead to
ambiguity and be difficult to interpret.

We conducted a large number of experiments by varying different parameters. We present
the most interesting patterns obtained with parameters minsup = 0.2 (20%), minimum time
interval=1, maximum time interval=1, min_whole_interval=2 and max_whole_interval=6.
The minimum and the maximum time interval are both set to 1 to extract consecutive
evolutions of ponds.

To better analyze and interpret sequential patterns, we developed a visualisation tool using
Matlab. For each sequential pattern, we visualize all its instances in the 14 consecutive
images. For example, an extracted pattern ⟨ ¶W ithActivity♢,¶W ithoutActivity♢,¶W ithoutActivity♢,

¶W ithoutActivity♢,¶W ithoutActivity♢ ⟩ of length 5 is shown in Fig. 4.15 (from 2001 to 2008) and
Fig. 4.16 (from 2009 to 2012). That pattern is displayed in two Ągures because the 10
corresponding images could not be displayed on one page. As shown in those Ągures, each
red pond represents an instance of this pattern over 5 consecutive times. The time where
each red contour appears represents the beginning time of this instance. This pattern depicts
the evolution that an active pond became inactive and remained inactive in four consecutive
timestamps. It is veriĄed by 668 ponds (frequency=668). As we can see from Ągure C
and Ągure D in Fig. 4.15, most of ponds in the center became inactive from 2003 due to
abandonment of those ponds by farmers after disease outbreaks. Then, we can notice that
between 2010 and 2011, numerous ponds in the periphery became inactive (Ągure H and
Ągure I in Fig. 4.16). This can be explained by strong temperature anomalies (-3◦C) during
this period (Gusmawati et al., 2017). It reveals a gradient of abandonment from the center
to the periphery of this agrosystem. (Gusmawati et al., 2017) obtained the same result by
using a manual approach. To analyze such temporal evolutions of ponds, they display the
dates of last activity of each pond in one map (Fig. 4.17). This map gives us a global view of
ponds evolutions. However, we could not know when and where an evolution locally occurs.

Application to spatio-temporal data analysis 97

Figure 4.15 Ű First sequential pattern ⟨ {WithActivity}, {WithoutActivity}, {WithoutActivity},

{WithoutActivity}, {WithoutActivity} ⟩ (from 2001 to 2008). Red contours represent active
ponds which became inactive in the 4 consecutive years. A: 12/10/2001, B: 09/03/2002, C:
21/02/2003, D: 27/06/2003, E: 22/09/2007, F: 19/07/2008

98 6. Pond evolution by sequential pattern mining

Figure 4.16 Ű First sequential pattern ⟨ {WithActivity}, {WithoutActivity}, {WithoutActivity},

{WithoutActivity}, {WithoutActivity} ⟩ (from 2009 to 2012). Red contours represent active
ponds which became inactive in the 4 consecutive years. G: 09/07/2009, H:16/08/2010,
I:15/04/2011, J:23/10/2012

Figure 4.17 Ű Cadastre of the last activity detected in ponds between 2001 and 2015 in
Perancak estuary, based on Integrated Pond Activity Indicator (Gusmawati et al., 2017)

Application to spatio-temporal data analysis 99

Figure 4.18 Ű Second sequential pattern ⟨ {WithActivity}, {WithoutActivity}, {WithActivity} ⟩

(from 2001 to 2008). Red contours represent active ponds became inactive in the second
years and then became active again in the third year. A: 12/10/2001, B: 09/03/2002, C:
21/02/2003, D: 27/06/2003, E: 22/09/2007, F: 19/07/2008

100 6. Pond evolution by sequential pattern mining

Figure 4.19 Ű Second sequential pattern ⟨ {WithActivity}, {WithoutActivity}, {WithActivity} ⟩

(from 2009 to 2012). Red contours represent active ponds became inactive in the second years
and then became active again in the third year. G: 09/07/2009, H:16/08/2010, I:15/04/2011,
J:23/10/2012

Fig. 4.18 (from 2001 to 2008) and Fig. 4.19 (from 2009 to 2012) show another example of
sequential pattern ⟨ ¶W ithActivity♢,¶W ithoutActivity♢,¶W ithActivity♢,⟩ of length 3. It is veriĄed
by 478 ponds. That pattern represents an evolution over 3 consecutive timestamps. It
describes an active pond became inactive in the second year and became active again in the
third year. We can observe that this pattern is only present in periphery zones. It is due to
the fact that farmers dry their ponds regularly to improve sediments.

Fig. 4.20 (from 2001 to 2008) and Fig. 4.21 (from 2009 to 2011) show another example of se-
quential pattern ⟨ ¶W ithoutActivity♢,¶W ithoutActivity♢,¶W ithoutActivity♢, ¶W ithActivity♢ ⟩ which
is veriĄed by 258 ponds. It depicts an evolution over 4 consecutive timestamps. It represents
an inactive pond remained inactive in the three consecutive years and then became active in
the forth year. We observe that in periphery zones, a large amount of inactive ponds became
active in the second year. This is due to two kinds of human activities. Firstly, farmers felled
trees to activate ponds. Secondly, some ponds were rehabilitated to produce Ąsh or shrimp
after a period of abandonment (Gusmawati et al., 2017).

Application to spatio-temporal data analysis 101

Figure 4.20 Ű Third sequential pattern ⟨ {WithoutActivity}, {WithoutActivity}, {WithoutActivity},

{WithActivity} ⟩ (from 2001 to 2008). Red contours represent inactive ponds remained inactive
in the two consecutive years and then became active in the forth year. A: 12/10/2001, B:
09/03/2002, C: 21/02/2003, D: 27/06/2003, E: 22/09/2007, F: 19/07/2008

102 6. Pond evolution by sequential pattern mining

Figure 4.21 Ű Third sequential pattern ⟨ {WithoutActivity}, {WithoutActivity}, {WithoutActivity},

{WithActivity} ⟩ (from 2009 to 2011). Red contours represent inactive ponds remained inactive
in the two consecutive years and then became active in the forth year. G: 09/07/2009, H:
16/08/2010, I: 15/04/2011

Sequential mining algorithms also enable experts to use all attributes to analyze pond evolu-
tions which could not be performed by the manual approach (considering only one attribute
at a time) (Gusmawati et al., 2017). Fig. 4.22 and Fig. 4.23 show an example of sequential
pattern ⟨ ¶W ithoutActivity, W ithV egetation♢,¶W ithActivity, W ithoutV egetation♢ ⟩ which is veriĄed
by 114 ponds. It represents an evolution over 2 consecutive timestamps. It represents in-
active pond with vegetation becomes active pond without vegetation the next year. This is
because mangrove trees were cut to rehabilitate aquaculture activity in those ponds. More-
over, wood can be used as a resource for farmers. This kind of patterns also allow experts
to study automatically management of mangroves instead of time consuming manual image
analysis (Proisy et al., 2018).

Application to spatio-temporal data analysis 103

Figure 4.22 Ű Forth sequential pattern ⟨ {WithoutActivity, WithVegetation}, {WithActivity, With-

outVegetation} ⟩ (from 2001 to 2008). Red contours represent inactive pond with vegetation
becomes active pond without vegetation in the next year. A: 12/10/2001, B: 09/03/2002,
C: 21/02/2003, D: 27/06/2003, E: 22/09/2007, F: 19/07/2008

104 6. Pond evolution by sequential pattern mining

Figure 4.23 Ű Forth sequential pattern ⟨ {WithoutActivity, WithVegetation}, {WithActivity, With-

outVegetation} ⟩ (from 2009 to 2014). Red contours represent inactive pond with vegetation
becomes active pond without vegetation in the next year. G: 09/07/2009, H: 16/08/2010, I:
15/04/2011, J: 23/10/2012 K: 10/12/2013, L: 26/03/2014

Conclusions and Discussions Sequence mining methods provide to domain experts a
semi-automatic tool to analyze temporal pond and mangrove evolutions. Compared with
traditional analysis done manually by experts, application of sequence mining methods have
two signiĄcant advantages. Firstly, it takes experts a large amount of time to analyze ponds

105

one by one manually, whereas sequence mining methods permit to extract interesting patterns
found in (Gusmawati et al., 2017) automatically. Secondly, experts could only consider one
attribute at a time to analyze evolutions, while sequence mining methods enable to consider
all attributes. However, these methods have also some limitations. Firstly, we cannot take
into account the spatial relationships between objects. Secondly, division and fusion of
objects could lead to biases of extracted pattern frequencies (could be higher than real
frequency). Thirdly, frequency constraint permits to know how many sequences (objects)
verify extracted pattern. Moreover, we do not know how many times extracted patterns
appear in a single sequence. To deal with those limitations, we apply our approach RPMiner

to this dataset.

7. Pond evolution by graph mining

Compared with sequence mining algorithm in (Fournier-Viger et al., 2008), our algorithm
RPMiner permits to analyze both temporal and spatial evolutions. More precisely, instead
of studying evolution of individual pond over time, recurrent patterns enable experts to study
how a set of connected ponds (spatially) evolve together over time (temporally). Based on
those extracted recurrent patterns, we could generate aquaculture farm cadastres, identify
different farmersŠ practices and analyze mangrove dynamic etc.

We conducted a large number of experiments by varying different parameters. We Ąrstly
present several interesting patterns extracted with parameters minvol = 2, minsup = 2,
gap = 1 mincos = 0 and mincom = 2. mincos is set to 0, because we focus on evolutions of
groups of connected ponds, which usually represent farms.

To better analyze and interpret recurrent patterns, we also developed another visualisation
tool using Matlab. We only visualize the Ąrst occurrence for each recurrent pattern because
all occurrences of a recurrent pattern are the same. Fig. 4.24 shows an example of size-2
recurrent pattern. As mentioned previously, a recurrent pattern represents a set of connected
vertices. However, we do not know how vertices are connected between each other. Thus,
we visually represent a pattern by sequence of graphs with dotted lines for edges. Fig. 4.25
shows its Ąrst occurrence. That pattern depicts the evolution of 10 adjacent ponds. These
adjacent inactive ponds (blue) became active (red) in the next year. The pattern appears
two times, Ąrst one from 2009 to 2010 and other one from 2012 to 2013. That pattern enables
experts to identify farms and establish aquaculture farm cadastre, because farms are usually
managed in the similar manner by holders and recurrent patterns could depict these similar
managements over time. We summarize this pattern in Table 4.11 in which the Ąrst column
represents vertices of the farm (a set of adjacent ponds), the following columns represent
their attributes values in consecutive timestamps. An other example of pattern is presented
in Fig. 4.26 and its Ąrst occurrence is displayed in Fig. 4.27. This size-2 pattern depicts a
set of active ponds (red) became inactive (blue) in the second year. It appears two times,

106 7. Pond evolution by graph mining

Ąrstly from 2007 to 2008 and secondly from 2011 to 2012. This is because 2008 and 2012
were two drying periods in which farmers oxidize harmful chemical substances and eliminate
undesirable species (e.g. sulĄdes). Table 4.12 shows details of this pattern.

Table 4.11 Ű First recurrent pattern (Fig. 4.25). The Ąrst column represents vertices of the
farm (a set of adjacent ponds), the following columns represent detailed attributes informa-
tion of ponds in consecutive timestamps. It depicts a set of inactive ponds became active,
this recurrent pattern repeats two times

Ponds Attributes of ponds in Ąrst image
(timestamp)

Attributes of ponds in second image
(timestamp)

Pond474 WithoutActivity, WithoutVegeta-
tion, WithoutAerator

WithoutWater, WithAcitivity,
WithBridge, WithoutVegetation,
WithoutAerator

Pond484 WithoutWater, WithoutActivity,
WithBridge, WithoutVegetation,
WithoutAerator

WithWater, WithAcitivity, With-
Bridge, WithoutVegetation, With-
outAerator

Pond487 WithoutWater, WithoutActivity,
WithoutVegetation, WithoutAera-
tor

WithWater, WithAcitivity, With-
Bridge, WithoutVegetation, With-
outAerator

Pond492 WithoutWater, WithoutActivity,
WithoutVegetation, WithoutAera-
tor

WithWater, WithAcitivity, With-
Bridge, WithoutVegetation, With-
outAerator

Pond493 WithoutWater, WithoutActivity,
WithoutBridge, WithoutVegeta-
tion, WithoutAerator

WithWater, WithAcitivity, With-
Bridge, WithoutVegetation, With-
outAerator

Pond495 WithoutWater, WithoutActivity,
WithoutBridge, WithoutVegeta-
tion, WithoutAerator

WithoutWater, WithoutAerator

Pond544 WithoutActivity, WithoutVegeta-
tion, WithoutAerator

WithWater, WithAcitivity, With-
Bridge WithoutVegetation, With-
outAerator

Pond548 WithoutWater, WithoutActivity,
WithoutVegetation, WithoutAera-
tor

WithAcitivity, WithBridge, With-
outVegetation, WithoutAerator

Pond533 WithoutActivity, WithoutVegeta-
tion, WithoutAerator

WithWater, WithAcitivity, With-
Bridge, WithoutVegetation, With-
outAerator

Pond559 WithoutActivity, WithoutVegeta-
tion, WithoutAerator

WithAcitivity, WithBridge, With-
outVegetation, WithoutAerator

Application to spatio-temporal data analysis 107

Figure 4.24 Ű First recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW:
WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4.25 Ű First recurrent pattern. It depicts a set of 10 adjacent inactive (blue) ponds
became active (red) in the next year. It appears two times, one from 2009 to 2010 and the
other from 2012 to 2013

108 7. Pond evolution by graph mining

Table 4.12 Ű Second recurrent pattern (Fig. 4.27). The Ąrst column represents vertices of
the farm (a set of adjacent ponds), the following columns represent the detailed attributes
information of ponds in consecutive timestamps. It depicts a set of active ponds became
inactive, this recurrent pattern repeats two times.

Ponds Attributes of ponds in Ąrst image
(timestamp)

Attributes of ponds in second image
(timestamp)

Pond1559 WithAcitivity, WithoutVegetation,
WithoutAerator

WithoutWater, WithoutActivity,
WithoutBridge, WithoutVegeta-
tion, WithoutAerator

Pond1567 WithAcitivity, WithoutVegetation,
WithoutAerator

WithoutWater, WithoutActivity,
WithoutBridge, WithoutVegeta-
tion, WithoutAerator

Pond1578 WithAcitivity, WithoutVegetation,
WithoutAerator

WithoutWater, WithoutActivity,
WithoutBridge, WithoutVegeta-
tion, WithoutAerator

Pond1585 WithAcitivity, WithoutVegetation,
WithoutAerator

WithoutWater, WithoutActivity,
WithoutBridge, WithoutVegeta-
tion, WithoutAerator

Pond1590 WithAcitivity, WithoutVegetation,
WithoutAerator

WithoutWater, WithoutActivity,
WithoutBridge, WithoutVegeta-
tion, WithoutAerator

Pond1600 WithAcitivity, WithoutVegetation,
WithoutAerator

WithoutWater, WithoutActivity,
WithoutBridge, WithoutVegeta-
tion, WithoutAerator

Pond1611 WithWater, WithAcitivity, With-
outVegetation, WithoutAerator

WithoutWater, WithoutActivity,
WithoutBridge, WithoutVegeta-
tion, WithoutAerator

Pond1654 WithoutVegetation, WithoutAera-
tor

WithoutActivity, WithoutBridge,
WithoutVegetation, WithoutAera-
tor

Application to spatio-temporal data analysis 109

Figure 4.26 Ű Second recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW:
WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4.27 Ű Second recurrent pattern. It depicts a set of active ponds (red) became inactive
(blue) in the next year. It appears twice, one from 2007 to 2008 and the other from 2001 to
2012.

Fig. 4.28 displays another example of size-3 recurrent pattern. Fig. 4.29 shows its Ąrst
occurrence. This pattern depicts the evolution of 8 adjacent ponds. It appears 3 times, from
2007 to 2009, from 2010 to 2012 and from 2014 to 215. It allows experts not only to identify

110 7. Pond evolution by graph mining

farms but also to understand another traditional management by aquaculture holders. As
we can see, 7 out of 8 adjacent ponds (red) remained active over time. However, one pond
of this group remained inactive. This is because aquaculture holders usually use one pond
to stock water to serve other active ponds. So this pattern can be used to identify speciĄc
farm practices. (Table 4.13) gives this pattern details.

Table 4.13 Ű Third recurrent pattern (Fig. 4.29). The Ąrst column represents vertices of the
farm (a set of adjacent ponds), the following columns represent detailed attributes informa-
tion of ponds in consecutive timestamps. It depicts an evolution of 8 ponds, where 7 out
of 8 adjacent ponds (red) remained active over time while one pond (blue) of this group
remained inactive. This recurrent pattern repeats three times

Ponds Attributes of ponds in
Ąrst image (timestamp)

Attributes of ponds in
second image (times-
tamp)

Attributes of ponds
in third image (times-
tamp)

Pond123 WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

WithAcitivity, With-
outVegetation, With-
outAerator

Pond130 WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

Pond136 WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

Pond159 WithoutWater, With-
outActivity, Without-
Bridge, WithoutAera-
tor

WithoutWater, With-
outActivity, Without-
Bridge, WithoutAera-
tor

WithoutWater, With-
outActivity, Without-
Bridge, WithoutAera-
tor

Pond170 WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

WithAcitivity, With-
outVegetation, With-
outAerator

WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

Pond171 WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

WithoutWater,
WithAcitivity, With-
Bridge, WithoutVege-
tation

WithBridge, With-
outVegetation, With-
outAerator

Pond178 WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

WithAcitivity, With-
outVegetation, With-
outAerator

WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

Pond182 WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

WithAcitivity, With-
outVegetation, With-
outAerator

WithAcitivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

Application to spatio-temporal data analysis 111

Figure 4.28 Ű Third recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW:
WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4.29 Ű Third recurrent pattern. It depicts the evolution of 8 ponds, where 7 of 8
adjacent ponds (red) remained active over time while one pond (blue) of this group remained
inactive. This recurrent pattern repeats three times.

Fig. 4.30 depicts another recurrent pattern extracted in the aquaculture dataset. Fig. 4.31
shows its Ąrst occurrence. Again, this size-2 pattern allows experts to validate another

112 7. Pond evolution by graph mining

management of farmers. As we can see, it describes the evolution of 6 adjacent ponds (6
inactive ponds in blue became active in red in the next year). This pattern appears two
times: from 2007 to 2008 and then from 2009 to 2010. Moreover, as shown in Table 4.14, the
pond1762 is divided into pond1762 and pond1763, and pond1767 is divided into pond1767
and pond1768. This is because it is more difficult to manage and control diseases in large
ponds compared to small ponds. Therefore, to improve pond management and to control
these diseases more efficiently, holders divided one pond into two or more smaller ponds.
This pattern particularly shows one of the main advantages of our approach: they permit to
Ąnd evolutions at vertex level, i.e. appearance, disappearance, fusion, division of ponds over
time.

Table 4.14 Ű Forth recurrent pattern (Fig. 4.31). The Ąrst column represents vertices of the
farm (a set of adjacent ponds), the following columns represent detailed attributes infor-
mation of ponds in consecutive timestamps. It depicts an evolution of 6 adjacent ponds (6
inactive ponds became active in the next year) This recurrent pattern repeats two times

Ponds Attributes of ponds in Ąrst image
(timestamp)

Attributes of ponds in second image
(timestamp)

Pond1753 WithoutWater, WithoutActivity,
WithoutBridge, WithoutAerator

WithoutWater, WithoutBridge,
WithoutVegetation, WithoutAera-
tor

Pond1762 WithoutWater, WithoutActivity,
WithoutBridge, WithoutVegeta-
tion, WithoutAerator

WithAcitivity, WithoutVegetation,
WithoutAerator

Pond1763 WithAcitivity, WithoutVegetation,
WithoutAerator

Pond1767 WithoutWater, WithoutActivity,
WithoutBridge, WithoutVegeta-
tion, WithoutAerator

WithoutWater, WithAcitivity,
WithoutBridge, WithoutVegeta-
tion, WithoutAerator

Pond1768 WithAcitivity, WithoutVegetation,
WithoutAerator

Pond1775 WithoutWater, WithoutActivity,
WithoutBridge, WithoutAerator

WithoutWater, WithBridge, With-
outVegetation, WithoutAerator

Pond1785 WithoutWater, WithoutActivity,
WithoutBridge, WithoutVegeta-
tion, WithoutAerator

WithAcitivity, WithBridge, With-
outVegetation, WithoutAerator

Pond1786 WithoutActivity, WithoutBridge,
WithoutVegetation, WithoutAera-
tor

WithAcitivity, WithoutVegetation,
WithoutAerator

Application to spatio-temporal data analysis 113

Figure 4.30 Ű Forth recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW:
WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4.31 Ű Forth recurrent pattern. It depicts the evolution of 6 adjacent ponds (6 inactive
ponds in blue became active in red in the next year). This pattern appears two times: from
2007 to 2008 and then from 2009 to 2000.

Another example of recurrent pattern is shown in Fig. 4.32. Fig. 4.33 shows its Ąrst occur-
rence. This size-3 pattern outlines a set of 6 active adjacent ponds (red) in the center region
that became inactive (blue) in the following two years. It appears two times, from 2007

114 7. Pond evolution by graph mining

to 2009 and from 2013 to 2014. As shown from the Ąrst sequential pattern above, almost
all ponds in center region were abandoned by farmers from 2003. However, this pattern
shows that a set of ponds became active again in 2007 and in 2013. This is because these
ponds were speciĄcally used by scientists to conduct experimental trials. It also shows that
recurrent patterns permit to detect unusual behaviors (evolutions). Table 4.15 gives details
for this pattern.

Table 4.15 Ű Fifth recurrent pattern (Fig. 4.33). The Ąrst column represents vertices of the
farm (a set of adjacent ponds), the following columns represent detailed attributes informa-
tion of ponds in consecutive timestamps. It depicts a set of 6 adjacent active ponds in the
center region became inactive in the two following years This recurrent pattern repeats two
times

Ponds Attributes of ponds in
Ąrst image (timestamp)

Attributes of ponds in
second image (times-
tamp)

Attributes of ponds
in third image (times-
tamp)

Pond1165 WithWater, WithAci-
tivity, WithoutVegeta-
tion, WithoutAerator

WithoutWater, With-
outActivity, With-
outVegetation, With-
outAerator

WithoutWater, With-
outActivity, Without-
Bridge, WithoutVegeta-
tion, WithoutAerator

Pond1167 WithAcitivity, With-
outVegetation, With-
outAerator

WithoutWater, With-
outActivity, With-
Bridge, WithoutVege-
tation, WithoutAerator

WithoutWater, With-
outActivity, Without-
Bridge, WithoutVegeta-
tion, WithoutAerator

Pond1205 WithoutVegetation,
WithoutAerator

WithoutWater, With-
outActivity, With-
outVegetation, With-
outAerator

WithoutWater, With-
outActivity, Without-
Bridge, WithoutVegeta-
tion, WithoutAerator

Pond1221 WithWater, WithAci-
tivity, WithoutVegeta-
tion, WithoutAerator

WithoutWater, With-
outActivity, With-
outVegetation, With-
outAerator

WithoutWater, With-
outActivity, With-
outVegetation, With-
outAerator

Pond1224 WithoutVegetation,
WithoutAerator

WithoutWater, With-
outActivity, With-
outVegetation, With-
outAerator

WithoutWater, With-
outActivity, Without-
Bridge, WithoutVegeta-
tion, WithoutAerator

Pond1245 WithWater, WithAci-
tivity, WithoutVegeta-
tion, WithoutAerator

WithoutWater, With-
outActivity, With-
outVegetation, With-
outAerator

WithoutWater, With-
outActivity, Without-
Bridge, WithoutVegeta-
tion, WithoutAerator

Application to spatio-temporal data analysis 115

Figure 4.32 Ű Fifth recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW:
WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4.33 Ű Fifth recurrent pattern. It depicts a set of 6 adjacent active ponds (red) in the
center region became inactive (blue) in the two following years. It appears two times, one
from 2007 to 2009 and the other from 2013 to 2014.

116 7. Pond evolution by graph mining

Figure 4.34 Ű Sixth recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW:
WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4.35 Ű Sixth recurrent pattern. It depicts the evolution of a set of 11 adjacent ponds
over four timestamps. Most of these ponds were active (red) Ąrstly became inactive (blue) in
the second year, then became active again (red) in the third year and Ąnally became inactive
(blue) in the forth year. This pattern appears two times: from 2007 to 2010 and from 2011
to 2014.

Application to spatio-temporal data analysis 117

Fig. 4.34 displays another recurrent pattern extracted from the aquaculture dataset. Fig. 4.35
shows its Ąrst occurrence. This size-4 pattern depicts the recurrent evolution of a set of 11
adjacent ponds over four timestamps. As we can see, most of those ponds were active (red)
at Ąrst, and then became inactive (blue), active (red) and inactive again (blue) during the
following three years (blue). This pattern appears two times: from 2007 to 2010 and from
2011 to 2014. This pattern highlights that aquaculture holders dry their ponds regularly to
improve pond sediment.

Besides activity, recurrent patterns also permit to study the activity intensity level of aqua-
culture ponds. Fig. 4.36 describes another example of recurrent pattern. Fig. 4.37 shows its
Ąrst occurrence. That pattern depicts the evolution of a farm composed of 8 adjacent ponds.
As we can see in this Ągure, most of active ponds with aerators (red) had no more aerators
(blue) in the next year. This size-2 pattern appears two times: from 10/2001 to 03/2002
and from 02/2003 to 06/2003. Farmers add and reduce the number of aerators of active
ponds regularly because of these three following reasons: (1) Aerators are used to oxygenate
the water column . They can raise the dissolved oxygen (DO) level to maintain oxygen
level for animals and to permit aerobic bacteria to reduce biochemical oxygen demand thus
improving water quality (Moulick et al., 2002). (2) Mixing of pond water by aerators can
reduce temperature vertical stratiĄcation and chemical substances (e.g. sulĄdes) (Boyd and
Clay, 1998). (3) Changing culture system from intensive pond into semi-intensive pond may
decrease the risk of disease emergence (Alapide et al., 2010).

Figure 4.36 Ű Seventh recurrent pattern. WAc: WithActivity, NAc: WithoutActivity,
WB: WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW:
WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

118 7. Pond evolution by graph mining

Figure 4.37 Ű Seventh recurrent pattern. It depicts the evolution of a farm composed of 8
adjacent ponds. Most of the active ponds with aerators (red) had no more aerators (blue)
in the next year. This pattern appears two times: from 10/2001 to 03/2002, from 02/2003
to 06/2003.

Fig. 4.39 describes another example of recurrent pattern. As shown in Fig. 4.38, this size-
2 pattern appears two times: from 10/2001 to 03/2002 and from 02/2003 to 06/2003. It
shows that farmers usually adopt similar measures (adding and reducing aerators regularly)
to manage active ponds.

Figure 4.38 Ű Eighth recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB:
WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW:
WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Application to spatio-temporal data analysis 119

Figure 4.39 Ű Eighth recurrent pattern. It depicts the evolution of a farm composed of 6
adjacent ponds. These active ponds with aerators (red) had no more aerators (blue) in
the next year. This pattern appears two times: from 10/2001 to 03/2002, from 02/2003 to
06/2003

Figure 4.40 Ű Ninth recurrent pattern. It depicts the evolution activities of 55 adjacent ponds
from 2001 to 2008, where red ponds represent active ponds and blue ponds represent inactive
ponds

120 7. Pond evolution by graph mining

We conducted another experiments with parameters minvol = 10, minsup = 1, gap = 1

mincos = 0 and mincom = 5. In that context, extracted patterns could only occur one time.
However, they are of great value to study viral disease and mangrove spread. Fig. 4.40 shows
an example: (⟨ (Pond1142, ... , Pond1858: WithAcitivity ♣ Pond1150, ... , Pond1859: WithoutAcitivity)

... (Pond1142, ... , Pond1859: WithoutAcitivity) ⟩, ¶10/2001♢). It describes the activity evolution of
an adjacent pond set during 6 consecutive times (from 2001 to 2008). To make this pattern
easier to read, we grouped ponds (vertices) having the same attributes. As we can see, in
2003, most of the ponds (38 out of 55) were active (red) and 17 ponds were inactive (blue) in
center region. Then, more and more active ponds adjacent to inactive ponds became inactive
year after year. We can observe that, even though farmers split several ponds into smaller
ponds to eliminate diseases and activate those ponds in 2007, all 59 ponds became inactive
in 2008. It is due to the fact that disease transmission often occurs in the ecosystem(Salama
and Murray, 2011). This pattern shows powerful impact of disease on pond activity.

Figure 4.41 Ű Tenth recurrent pattern. This pattern shows mangrove spread in a farm com-
posed of 53 ponds over 6 consecutive times (from 2001 to 2008), where red ponds represent
the ponds without vegetation and blue ponds represent the ponds with vegetation

Application to spatio-temporal data analysis 121

Fig. 4.41 displays a recurrent pattern describing mangroves evolution: (⟨ (Pond888, ... ,

Pond1207: WithoutVegetation ♣ Pond1000, ... , Pond1174: WithVegetation) ... (Pond888, ... , Pond1207:

WithVegetation) ⟩, ¶10/2001♢). This pattern shows mangrove development in a farm composed
of 53 ponds over 6 consecutive times (from 2001 to 2008). As we can see, in 2003, nearly half
of ponds (24 out of 53) did not have vegetation (red). Then more and more ponds without
vegetation and adjacent to ponds with vegetation began to be colonized by mangrove year
after year. In 2008, almost all ponds (45 out of 53) were colonized by mangrove (blue). This
kind of patterns can thus be used to follow pond colonization by mangrove trees.

Conclusions and Discussions Results show that recurrent patterns extracted by our
method RPMiner could help domain experts to identify farms, understand various manage-
ments of farmers and study disease and mangrove spread over adjacent ponds etc. RPMiner

provides domain experts a new insight to study how a set of connected ponds evolve over
time. As presented above, most of extracted patterns are not very "big" in term of size and
frequency (one pattern with frequency 3 and size 3, one pattern with frequency 2 and size 4,
some others with frequency 2 and size 2). In fact we have extracted numerous frequent and
long patterns. We present here patterns selected by experts based on their domain interest
and their interpretability. Moreover, evolution circles are long for some aquaculture moni-
toring. As a consequence, a less frequent pattern could be meaningful for domain experts.
In future works, we could study aquaculture ponds in a short term (within one production
circle of shrimps). Instead of yearly satellite images, we could use monthly images to study
how farmers manage (add and reduce) aerators to control diseases, improve water quality
and eventually increase the production of shrimp. With those monthly data, we may extract
more frequent, longer but also meaningful patterns.
In the pre-processing stage, bridges are very difficult to detect because of theirs sizes and
the low contrast of image. Currently, they are detected manually by a domain expert. Thus,
it would be interesting to propose methods to identify this indicator automatically. In this
application, recurrent patterns depict evolutions of sets of adjacent ponds. They are local
patterns, describing recurrent phenomena depending on their locations. In the future work,
we would develop a new algorithm to extract more general patterns: frequent evolution of
connected ponds, considering all pattern occurrences.
When comparing our approach with sequence mining algorithms (Fournier-Viger et al., 2008;
Fournier-Viger et al., 2014; Pei et al., 2007), we can see that RPMiner considers not only
temporal relationships but also spatial relationships between vertices. Instead of studying
evolutions individually, RPMiner permits to study evolutions of a set of connected vertices
over time. Moreover, RPMiner considers more complicated evolutions, such as appearance,
disappearance, fusion and division of vertices, while we have to introduce biases to study
such data with sequence mining algorithms. Another difference is that the frequency deĄned
by sequence mining methods is the number of sequences verifying the pattern, whereas
frequency deĄned by RPMiner shows how many times that a recurrent pattern occurs over
time. Those two frequency deĄnitions give experts two different angles to understand and
analyze evolutions.

122 7. Pond evolution by graph mining

Chapter 5

Conclusions and perspectives

Contents

1 Conclusions . 125

2 Perspectives . 126

2.1 Using other strategies . 126

2.2 Parallel computing . 126

2.3 Mining more global patterns . 127

123

124

125

1. Conclusions

This thesis focuses on spatio-temporal data mining and its application to aquaculture mon-
itoring. The application of aquaculture monitoring aims at describing, understanding and
monitoring shrimp farming in Indonesia based on time series of satellite images. Several
works have used sequence mining and graph mining algorithms to analyze such complex
data. However, these approaches are limited. Sequence mining algorithms donŠt consider
spatial relationships between vertices or only consider direct neighboring environment, while
most graph mining algorithms can study only one attribute per object instead of consid-
ering more than one attribute. For this purpose, we use a more general model, dynamic
attributed graph, to study spatio-temporal data. However, neither classical sequence mining
algorithms nor graph mining algorithms enable to study dynamic attributed graph. Tradi-
tional algorithms could not mine this model because mining dynamic attributed graph is
much more complex compared with sequential data or dynamic labeled graph. For this pur-
pose, we proposed a novel algorithm, RPMiner, to study such graph. Different from other
strategies that are based on depth-Ąrst search, breadth-Ąrst search, successive projections of
data or generate-test strategies, our algorithm is based on successive intersections of graphs.
With connected subgraphs generated from graph intersections, patterns are progressively
extended. The advantage of this approach it to avoid the generation of a large number of
patterns which do not verify constraints and to explore the graph in an incremental manner.
Our algorithm extracts recurrent patterns. They are in some ways sequences of connected
subgraphs verifying several constraints. Those constraints aim to reduce the search space
and to extract meaningful patterns. We use two constraints considering the graph structure,
i.e. the connectivity and the cohesiveness. We consider also a minimum frequency constraint
to Ąlter unfrequent patterns. This constraint is based on the number of recurrences of a pat-
tern over time. Two temporal constraints have also been used: temporal continuity and
time gap. Temporal continuity enables to target patterns which describe evolutions around
a common individual core. Fixed time gap allows to study evolutions in a short term and in
a long term.

To evaluate our method, we have done an experimental study on both syndetic and real-world
datasets. Our algorithm scales well on synthetic data according to the number of vertices,
the number of edges and the number of attributes (up to 1000 attributes per vertex) while the
execution time increases exponentially with the number of graphs. Our algorithm can mine
bigger graphs than most algorithms proposed for mining dynamic labeled graphs (Inokuchi
and Washio, 2008; Inokuchi and Washio, 2010b; Yan and Han, 2002). If we compare recurrent
patterns with patterns extracted by other dynamic attributed graph mining algorithms on
the same dataset (Kaytoue et al., 2014; Desmier et al., 2012), we observe that our approach
have results of the same order of magnitude although the extracted patterns are more general
(and so more costly to extract). It demonstrates the interest of the proposed approach and

126

its efficiency.
Our approach has been used to study evolutions of aquaculture farming. In that context, we
developed a complete KDD process: from pre-processing to visualization and interpretation
of results. We proposed an automatic and accurate method to extract aquaculture ponds
from a low contrast satellite images. Then, we developed several methods to identify pondsŠ
attributes. Two automatic processes have been developed to transform images of aquacul-
ture ponds to sequential data and dynamic attributed graph. We applied a sequence mining
algorithm to study temporal evolutions, and compare extracted patterns to the ones ex-
tracted with our algorithm RPMiner (which considers both spatial and temporal aspects).
Finally, extracted patterns were visualized on original satellite images and validated by do-
main experts. This application showed that our approach could give experts a new insight
to study spatio-temporal phenomena. It extracts recurrent evolutions of groups of adjacent
ponds. Moreover, our approach permits to study complex spatio-temporal phenomena by
considering appearance, disappearance, fusion and division of vertices over time.

2. Perspectives

2.1 Using other strategies

We developed a new algorithm, different from others based on depth-Ąrst search, breadth-
Ąrst search or successive projections strategies. Our algorithm is an incremental approach
based on successive intersections and extensions of connected components occurring over
time. It requires a large mount of memory because during this extension process, we have
to keep lots of patterns in memory to generate and extend patterns in the next iteration.
In the future work, we propose to explore the search space in a depth-Ąrst manner. Instead
of generating all patterns incrementally, we could generate only a part of size-1 patterns
by processing one time combination T (T ⊆ T k

1) and extend them until no more patterns
could be generated or extended. Then we could generate another part of size-1 patterns by
processing another time combination T ′ (T ′ ⊆ T k

i -T). This process could generate patterns
progressively until T k

i becomes empty. It can reduce memory usage and allows to study a
longer sequence of dynamic attributed graphs.

2.2 Parallel computing

Parallel execution of an algorithm on multi-core architecture enables to dramatically increase
performance (Gepner and Kowalik, 2006; Negrevergne et al., 2014). The original search space
could be divided into several portions where each portion can be independently computed.
In our approach, an important step is to calculate the graph intersections. The computation
of all possible size-1 patterns could be parallelized for each connected component.
Besides, distributed systems can scale our algorithm. For example, Hadoop (Hadoop, 2011)

Conclusions and perspectives 127

is a widely-used software framework for distributed storage and processing of large data sets.
However, it processes data in and out of the disk. Besides, it is not so efficient for iterative
processing, as Hadoop does not support cyclic data Ćow. Spark (Zaharia et al., 2016) is a
parallel data processing framework. It permits to run multiple tasks in parallel. Moreover, it
provides in-memory processing which could run 100 times faster than HadoopŠs MapReduce.
It permits applications to access data from RAM instead of disk. In the future work, Spark
could be used to improve the performance of our algorithm.

2.3 Mining more global patterns

Patterns extracted by our algorithm RPMiner represent recurrent evolutions of sets of
connected vertices. Those patterns are in some ways local patterns, as it depicts recurrent
evolution of speciĄc sets of connected vertices. We do not know whether there exits other
sets of vertices following same evolutions. Thus, a perspective of our work is to extract more
global patterns in dynamic attributed graph (e.g. frequent patterns instead of recurrent).
For this, we can use a post-processing approach or study a new pattern domain (and develop
a new mining algorithm).

Clustering A post-processing could be performed to group similar recurrent patterns. It
could facilitate interpretation and permit to seek for more general patterns, independent of
vertices. Comparing sequence similarity measures has been much studied, (Saneifar et al.,
2008) proposed an adjustable similarity measure to group similar sequences. This measure
considers not only itemset similarities but also their positions in sequences. In recent years,
the problem of determining the similarity or distance between graphs has raised much more
attention (Cha, 2007; Papadimitriou et al., 2010; Jeh and Widom, 2002). (Pelillo, 1999)
used graph isomorphism to evaluate the graph similarity. Two graphs are similar if they are
isomorphic between these two graphs. (Zager and Verghese, 2008) assessed the similarity
between two graphs by calculating similarity scores of vertices and edges. However, those
measures have to be adapted to recurrent patterns because we are working with sequence
of sets of itemsets, representing evolutions of connected graphs and not only sequence of
itemsets. In the future work, new similarity measure and an algorithm could be proposed to
group similar recurrent patterns.

New pattern domain and new mining algorithm A second approach could be to
extract more general patterns: frequent subgraph evolutions, considering all pattern occur-
rences in dynamic attributed graph. The main advantage of these patterns is to consider
evolutions independently from vertices in which they occur. In a spatio-temporal context,
it means that such patterns would highlight phenomena independently from their locations.
In the future work, we will study how to adapt our strategy to extract such patterns.

128 2. Perspectives

Bibliography

Nilfanion (2005a). LaTeX — Wikipedia, The Free Encyclopedia (cited page 70).
Ů (2005b). LaTeX — Wikipedia, The Free Encyclopedia (cited page 71).
Ů (2005c). LaTeX — Wikipedia, The Free Encyclopedia (cited page 71).
Abdi, M Reza and Sanjay Sharma (2007). ŞStrategic/tactical information management of

Ćight operations in abnormal conditions through Network Control Centre”. In: Interna-

tional Journal of Information Management 27.2, pages 119Ű138 (cited page 70).
Aggarwal, Charu C. and Haixun Wang, editors (2010). Managing and Mining Graph Data.

Volume 40. Springer (cited page 13).
Agrawal, Rakesh and Ramakrishnan Srikant (1995). ŞMining sequential patterns”. In: Data

Engineering, 1995. Proceedings of the Eleventh International Conference on. IEEE, pages 3Ű
14 (cited page 10).

Ahmed, Rezwan and George Karypis (2015a). ŞAlgorithms for mining the coevolving rela-
tional motifs in dynamic networks”. In: ACM Transactions on Knowledge Discovery from

Data (TKDD) 10.1, page 4 (cited pages 13, 22, 23).
Ů (2015b). ŞMining coevolving induced relational motifs in dynamic networks”. In: Proceed-

ings of the 2nd SDM Workshop on Mining Networks and Graphs: A Big Data Analytic

Challenge (cited page 22).
Alam, Muhammad Shahinur, David W Lamb, and Muhammad Moshiur Rahman (2018).

ŞA reĄned method for rapidly determining the relationship between canopy NDVI and
the pasture evapotranspiration coefficient”. In: Computers and electronics in agriculture

147.C, pages 12Ű17 (cited page 87).
Alapide, E Tendencia, RH Bosma, and JAJ Verreth (2010). ŞWSSV risk factors related to

water physico-chemical properties and microĆora in semi-intensive P. monodon culture
ponds in the Philippines”. In: Aquaculture 302.3-4, pages 164Ű168 (cited page 117).

Alatrista-Salas, Hugo, Sandra Bringay, Frédéric Flouvat, Nazha Selmaoui-Folcher, and Maguelonne
Teisseire (2012). ŞThe pattern next door: Towards spatio-sequential pattern discovery”.
In: Advances in Knowledge Discovery and Data Mining. Springer, pages 157Ű168 (cited
page 4).

Alho, AV, JE Hopcroft, and JD Ullman (1987). ŞData Structures and Algorithms. Addision-
Wesley”. In: Reading (Mass.) (cited page 50).

Apostolico, Alberto, Manuel Barbares, and Cinzia Pizzi (2011). ŞSpeedup for a periodic sub-
graph miner”. In: Information Processing Letters 111.11, pages 521Ű523 (cited page 22).

Aseervatham, Sujeevan, Aomar Osmani, and Emmanuel Viennet (2006). ŞbitSPADE: A
lattice-based sequential pattern mining algorithm using bitmap representation”. In: Data

129

130 Bibliographie

Mining, 2006. ICDM’06. Sixth International Conference on. IEEE, pages 792Ű797 (cited
page 11).

Aydin, Berkay and Rafal A Angryk (2016). ŞSpatiotemporal event sequence mining from
evolving regions”. In: Pattern Recognition (ICPR), 2016 23rd International Conference

on. IEEE, pages 4172Ű4177 (cited page 4).
Ayres, Jay, Jason Flannick, Johannes Gehrke, and Tomi Yiu (2002). ŞSequential pattern

mining using a bitmap representation”. In: Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data mining. ACM, pages 429Ű435
(cited pages 10, 11).

Berlingerio, Michele, Francesco Bonchi, Björn Bringmann, and Aristides Gionis (2009). ŞMin-
ing graph evolution rules”. In: Machine learning and knowledge discovery in databases,
pages 115Ű130 (cited pages 13, 24).

Berlingerio, Michele, Michele Coscia, Fosca Giannotti, Anna Monreale, and Dino Pedreschi
(2011). ŞFoundations of multidimensional network analysis”. In: Advances in Social Net-

works Analysis and Mining (ASONAM), 2011 International Conference on. IEEE, pages 485Ű
489 (cited page 13).

Bickel, Peter, Chao Chen, Jaimyoung Kwon, John Rice, Pravin Varaiya, and Erik van Zwet
(2003). ŞTraffic Ćow on a freeway network”. In: Nonlinear Estimation and Classification.
Springer, pages 63Ű81 (cited page 15).

Blaschke, Thomas (2010). ŞObject based image analysis for remote sensing”. In: ISPRS

journal of photogrammetry and remote sensing 65.1, pages 2Ű16 (cited page 80).
Bogdanov, Petko, Misael Mongiovì, and Ambuj K Singh (2011). ŞMining heavy subgraphs

in time-evolving networks”. In: Data Mining (ICDM), 2011 IEEE 11th International

Conference on. IEEE, pages 81Ű90 (cited pages 13, 15).
Borgwardt, Karsten M, Hans-Peter Kriegel, and Peter Wackersreuther (2006). ŞPattern min-

ing in frequent dynamic subgraphs”. In: Data Mining, 2006. ICDM’06. Sixth Interna-

tional Conference on. IEEE, pages 818Ű822 (cited page 13).
Boyd, Claude E and Jason W Clay (1998). ŞShrimp aquaculture and the environment”. In:

Scientific American 278.6, pages 58Ű65 (cited page 117).
Bringmann, Björn and Siegfried Nijssen (2008). ŞWhat is frequent in a single graph?” In:

Advances in Knowledge Discovery and Data Mining, pages 858Ű863 (cited page 25).
Burnett, Carolyn and Thomas Blaschke (2003). ŞA multi-scale segmentation/object rela-

tionship modelling methodology for landscape analysis”. In: Ecological modelling 168.3,
pages 233Ű249 (cited page 79).

Celik, Mete (2015). ŞPartial spatio-temporal co-occurrence pattern mining”. In: Knowledge

and Information Systems 44.1, pages 27Ű49 (cited page 4).
Celik, Mete, Shashi Shekhar, James P Rogers, and James A Shine (2006). ŞSustained emerg-

ing spatio-temporal co-occurrence pattern mining: A summary of results”. In: Tools with

Artificial Intelligence, 2006. ICTAI’06. 18th IEEE International Conference on. IEEE,
pages 106Ű115 (cited page 4).

Ů (2008). ŞMixed-Drove Spatio-Temporal Co-occurrence Pattern Mining”. In: network 11,
page 15 (cited page 4).

Bibliographie 131

Cerf, Loïc, Jérémy Besson, Céline Robardet, and Jean-François Boulicaut (2008). ŞData-
Peeler: Constraint-based closed pattern mining in n-ary relations”. In: proceedings of the

2008 SIAM International conference on Data Mining. SIAM, pages 37Ű48 (cited page 23).
Ů (2009a). ŞClosed patterns meet n-ary relations”. In: ACM Transactions on Knowledge

Discovery from Data (TKDD) 3.1, page 3 (cited page 23).
Cerf, Loïc, Tran Bao Nhan Nguyen, and Jean-François Boulicaut (2009b). ŞDiscovering rele-

vant cross-graph cliques in dynamic networks”. In: International symposium on method-

ologies for intelligent systems. Springer, pages 513Ű522 (cited pages 15, 24).
Cha, Sung-Hyuk (2007). ŞComprehensive survey on distance/similarity measures between

probability density functions”. In: City 1.2, page 1 (cited page 127).
Chettri, Nakul, Kabir Uddin, Sunita Chaudhary, and Eklabya Sharma (2013). ŞLinking

spatio-temporal land cover change to biodiversity conservation in the Koshi Tappu Wildlife
Reserve, Nepal”. In: Diversity 5.2, pages 335Ű351 (cited page 80).

Cook, Diane J and Lawrence B Holder (2006). Mining graph data. John Wiley & Sons (cited
page 13).

Damiand, Guillaume, Colin De La Higuera, Jean-Christophe Janodet, Émilie Samuel, and
Christine Solnon (2009). ŞA polynomial algorithm for submap isomorphism”. In: Inter-

national Workshop on Graph-Based Representations in Pattern Recognition. Springer,
pages 102Ű112 (cited page 21).

Deshpande, Mukund, Michihiro Kuramochi, Nikil Wale, and George Karypis (2005). ŞFre-
quent substructure-based approaches for classifying chemical compounds”. In: IEEE

Transactions on Knowledge and Data Engineering 17.8, pages 1036Ű1050 (cited page 13).
Desmier, Elise, Marc Plantevit, Céline Robardet, and Jean-François Boulicaut (2012). ŞCo-

hesive co-evolution patterns in dynamic attributed graphs”. In: International Conference

on Discovery Science. Springer, pages 110Ű124 (cited pages 3, 4, 27, 29, 33, 36, 52, 66,
125).

Ů (2013). ŞTrend mining in dynamic attributed graphs”. In: Joint European Conference

on Machine Learning and Knowledge Discovery in Databases. Springer, pages 654Ű669
(cited pages 3, 4, 29, 33).

Diesner, Jana, Terrill L Frantz, and Kathleen M Carley (2005). ŞCommunication networks
from the Enron email corpus âĂĲItŠs always about the people. Enron is no differ-
entâĂİ”. In: Computational & Mathematical Organization Theory 11.3, pages 201Ű228
(cited page 15).

Diot, Fabien, Elisa Fromont, Baptiste Jeudy, Emmanuel Marilly, and Olivier Martinot (2012).
ŞGraph mining for object tracking in videos”. In: Joint European Conference on Machine

Learning and Knowledge Discovery in Databases. Springer, pages 394Ű409 (cited page 21).
Dronova, Iryna, Peng Gong, Lin Wang, and Liheng Zhong (2015). ŞMapping dynamic cover

types in a large seasonally Ćooded wetland using extended principal component analysis
and object-based classiĄcation”. In: Remote Sensing of Environment 158, pages 193Ű206
(cited page 80).

Espindola, GM, Gilberto Câmara, IA Reis, LS Bins, and AM Monteiro (2006). ŞParameter se-
lection for region-growing image segmentation algorithms using spatial autocorrelation”.
In: International Journal of Remote Sensing 27.14, pages 3035Ű3040 (cited page 80).

132 Bibliographie

Fayyad, Usama M, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy
(1996). ŞAdvances in knowledge discovery and data mining”. In: (cited page 2).

Fiedler, Mathias and Christian Borgelt (2007). ŞSubgraph support in a single large graph”.
In: Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International

Conference on. IEEE, pages 399Ű404 (cited page 38).
Foody, Giles M (2004). ŞThematic map comparison”. In: Photogrammetric Engineering &

Remote Sensing 70.5, pages 627Ű633 (cited page 84).
Fournier-Viger, Philippe, Roger Nkambou, and Engelbert Mephu Nguifo (2008). ŞA knowl-

edge discovery framework for learning task models from user interactions in intelligent tu-
toring systems”. In: Mexican International Conference on Artificial Intelligence. Springer,
pages 765Ű778 (cited pages 12, 37, 96, 105, 121).

Fournier-Viger, Philippe, Antonio Gomariz, Ted Gueniche, Espérance Mwamikazi, and Rincy
Thomas (2013). ŞTKS: efficient mining of top-k sequential patterns”. In: International

Conference on Advanced Data Mining and Applications. Springer, pages 109Ű120 (cited
page 12).

Fournier-Viger, Philippe, Antonio Gomariz, Manuel Campos, and Rincy Thomas (2014).
ŞFast vertical mining of sequential patterns using co-occurrence information”. In: Pacific-

Asia Conference on Knowledge Discovery and Data Mining. Springer, pages 40Ű52 (cited
pages 10, 11, 96, 121).

Fraisse, CW, KA Sudduth, and NR Kitchen (2001). ŞDelineation of site-speciĄc manage-
ment zones by unsupervised classiĄcation of topographic attributes and soil electrical
conductivity”. In: Transactions of the ASAE 44.1, page 155 (cited page 85).

Gao, Bo-Cai (1996). ŞNDWIâĂŤA normalized difference water index for remote sensing of
vegetation liquid water from space”. In: Remote sensing of environment 58.3, pages 257Ű
266 (cited page 86).

Gao, Chuancong, Jianyong Wang, Yukai He, and Lizhu Zhou (2008). ŞEfficient mining of
frequent sequence generators”. In: Proceedings of the 17th international conference on

World Wide Web. ACM, pages 1051Ű1052 (cited page 12).
Gepner, Pawel and Michal Filip Kowalik (2006). ŞMulti-core processors: New way to achieve

high system performance”. In: Parallel Computing in Electrical Engineering, 2006. PAR

ELEC 2006. International Symposium on. IEEE, pages 9Ű13 (cited page 126).
Gomariz, Antonio, Manuel Campos, Roque Marin, and Bart Goethals (2013). ŞClaSP: an

efficient algorithm for mining frequent closed sequences”. In: Pacific-Asia Conference on

Knowledge Discovery and Data Mining. Springer, pages 50Ű61 (cited page 38).
Günnemann, Stephan and Thomas Seidl (2010). ŞSubgraph mining on directed and weighted

graphs”. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer,
pages 133Ű146 (cited page 16).

Gusmawati, Niken, Benoît Soulard, Nazha Selmaoui-Folcher, Christophe Proisy, Akhmad
Mustafa, Romain Le Gendre, Thierry Laugier, and Hugues Lemonnier (2017). ŞSurveying
shrimp aquaculture pond activity using multitemporal VHSR satellite images-case study
from the Perancak estuary, Bali, Indonesia”. In: Marine pollution bulletin (cited pages 2,
86, 90, 96, 98, 100, 102, 105).

Bibliographie 133

Gusmawati, Niken F, Cheng Zhi, Benoît Soulard, Hugues Lemonnier, and Nazha Selmaoui-
Folcher (2016). ŞAquaculture Pond Precise Mapping in Perancak Estuary, Bali, Indone-
sia”. In: Journal of Coastal Research 75.sp1, pages 637Ű641 (cited page 80).

Hadoop, Apache (2011). Apache hadoop (cited page 126).
Halder, Sajal, Md Samiullah, and Young-Koo Lee (2017). ŞSupergraph based periodic pattern

mining in dynamic social networks”. In: Expert Systems with Applications 72, pages 430Ű
442 (cited page 22).

Han, Jiawei, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar Dayal, and Mei-
Chun Hsu (2000). ŞFreeSpan: frequent pattern-projected sequential pattern mining”. In:
Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery

and data mining. ACM, pages 355Ű359 (cited page 12).
Holder, Lawrence B, Diane J Cook, et al. (2009). ŞLearning patterns in the dynamics of

biological networks”. In: Proceedings of the 15th ACM SIGKDD international conference

on Knowledge discovery and data mining. ACM, pages 977Ű986 (cited pages 15, 24).
Hossain, Md Zakir, W Muttitanon, M Phillips, and NK Tripathi (2002). ŞMonitoring shrimp

farming development from the space: A RS and GIS approach in Kandleru Creek area,
Andhra Pradesh, India”. In: Proceedings of the Map Asia (cited page 80).

Huan, Jun, Wei Wang, and Jan Prins (2003). ŞEfficient mining of frequent subgraphs in the
presence of isomorphism”. In: Data Mining, 2003. ICDM 2003. Third IEEE International

Conference on. IEEE, pages 549Ű552 (cited page 13).
Huang, Kuo-Yu, Chia-Hui Chang, Jiun-Hung Tung, and Cheng-Tao Ho (2006). ŞCOBRA:

closed sequential pattern mining using bi-phase reduction approach”. In: International

Conference on Data Warehousing and Knowledge Discovery. Springer, pages 280Ű291
(cited pages 12, 38).

Huang, Yan, Liqin Zhang, and Pusheng Zhang (2007). ŞA framework for mining sequential
patterns from spatio-temporal event data sets”. In: IEEE Transactions on Knowledge &

Data Engineering 4, pages 433Ű448 (cited page 4).
Inokuchi, Akihiro and Takashi Washio (2008). ŞA fast method to mine frequent subsequences

from graph sequence data”. In: Data Mining, 2008. ICDM’08. Eighth IEEE International

Conference on. IEEE, pages 303Ű312 (cited pages 13, 17, 19, 125).
Ů (2010a). ŞGTRACE2: Improving performance using labeled union graphs”. In: Pacific-

Asia Conference on Knowledge Discovery and Data Mining. Springer, pages 178Ű188
(cited page 18).

Ů (2010b). ŞMining frequent graph sequence patterns induced by vertices”. In: Proceedings

of the 2010 SIAM International Conference on Data Mining. SIAM, pages 466Ű477 (cited
pages 4, 13, 18, 125).

Inokuchi, Akihiro, Takashi Washio, and Hiroshi Motoda (2000). ŞAn apriori-based algorithm
for mining frequent substructures from graph data”. In: European Conference on Prin-

ciples of Data Mining and Knowledge Discovery. Springer, pages 13Ű23 (cited pages 13,
21).

Iváncsy, Renáta and István Vajk (2006). ŞFrequent pattern mining in web log data”. In: Acta

Polytechnica Hungarica 3.1, pages 77Ű90 (cited page 9).

134 Bibliographie

Jaccard, Paul (1912). ŞThe distribution of the Ćora in the alpine zone.” In: New phytologist

11.2, pages 37Ű50 (cited pages 28, 37).
Jain, Monika and SK Singh (2011). ŞA survey on: content based image retrieval systems

using clustering techniques for large data sets”. In: International Journal of Managing

Information Technology 3.4, page 23 (cited page 85).
Jaschke, Robert, Andreas Hotho, Christoph Schmitz, Bernhard Ganter, and Gerd Stumme

(2006). ŞTRIASŰAn Algorithm for Mining Iceberg Tri-Lattices”. In: Data Mining, 2006.

ICDM’06. Sixth International Conference on. IEEE, pages 907Ű911 (cited page 23).
Jeh, Glen and Jennifer Widom (2002). ŞSimRank: a measure of structural-context similar-

ity”. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge

discovery and data mining. ACM, pages 538Ű543 (cited page 127).
Ji, Liping, Kian-Lee Tan, and Anthony KH Tung (2006). ŞMining frequent closed cubes in

3D datasets”. In: Proceedings of the 32nd international conference on Very large data

bases. VLDB Endowment, pages 811Ű822 (cited page 23).
Jiang, Chuntao, Frans Coenen, and Michele Zito (2010). ŞFrequent sub-graph mining on edge

weighted graphs”. In: International Conference on Data Warehousing and Knowledge

Discovery. Springer, pages 77Ű88 (cited pages 15, 16).
Kaytoue, Mehdi, Yoann Pitarch, Marc Plantevit, and Céline Robardet (2014). ŞTriggering

Patterns of Topology Changes in Dynamic Graphs”. In: The 2014 IEEE/ACM Inter-

national Conference on Advances in Social Networks Analysis and Mining. Edited by
Guandong Xu Xindong Wu Martin Ester. Beijing, China, China: IEEE/ACM, 55:1Ű
55:17 (cited pages 3, 4, 26, 27, 53, 125).

Khan, Arijit, Xifeng Yan, and Kun-Lung Wu (2010). ŞTowards proximity pattern mining in
large graphs”. In: Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data. ACM, pages 867Ű878 (cited page 13).
Kim, Minho, Timothy A Warner, Marguerite Madden, and Douglas S Atkinson (2011).

ŞMulti-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, tex-
ture and image objects”. In: International Journal of Remote Sensing 32.10, pages 2825Ű
2850 (cited page 80).

Kiran, R Uday and P Krishna Reddy (2009). ŞMining rare periodic-frequent patterns using
multiple minimum supports”. In: work 5.6, pages 7Ű8 (cited page 12).

Kiran, R Uday, Masaru Kitsuregawa, and P Krishna Reddy (2016). ŞEfficient discovery of
periodic-frequent patterns in very large databases”. In: Journal of Systems and Software

112, pages 110Ű121 (cited page 12).
Kuramochi, Michihiro and George Karypis (2004). ŞAn efficient algorithm for discovering

frequent subgraphs”. In: IEEE Transactions on Knowledge and Data Engineering 16.9,
pages 1038Ű1051 (cited page 13).

Lahiri, Mayank and Tanya Y Berger-Wolf (2008). ŞMining periodic behavior in dynamic so-
cial networks”. In: Data Mining, 2008. ICDM’08. Eighth IEEE International Conference

on. IEEE, pages 373Ű382 (cited page 21).
Ů (2010). ŞPeriodic subgraph mining in dynamic networks”. In: Knowledge and Information

Systems 24.3, pages 467Ű497 (cited page 13).

Bibliographie 135

Lan, Guo-Cheng, Tzung-Pei Hong, Vincent S Tseng, and Shyue-Liang Wang (2014). ŞApply-
ing the maximum utility measure in high utility sequential pattern mining”. In: Expert

Systems with Applications 41.11, pages 5071Ű5081 (cited page 12).
Lee, Gangin and Unil Yun (2012). ŞMining Weighted Frequent Sub-graphs with Weight and

Support Affinities.” In: MIWAI. Springer, pages 224Ű235 (cited page 17).
Lin, Nancy P, Wei-Hua Hao, Hung-Jen Chen, Hao-En Chueh, Chung-I Chang, et al. (2007).

ŞFast mining maximal sequential patterns”. In: Proceedings of the 7th International

Conference on Simulation, Modeling and Optimization, September, pages 15Ű17 (cited
page 12).

Lo, David, Siau-Cheng Khoo, and Jinyan Li (2008). ŞMining and ranking generators of
sequential patterns”. In: Proceedings of the 2008 SIAM International Conference on Data

Mining. SIAM, pages 553Ű564 (cited page 12).
Lu, S and C Li (2004). ŞAprioriAdjust: An efficient algorithm for discovering the maxi-

mum sequential patterns”. In: Proc. Intern. Workshop knowl. Grid and grid intell (cited
page 12).

Luo, Congnan and Soon M Chung (2005). ŞEfficient mining of maximal sequential patterns
using multiple samples”. In: Proceedings of the 2005 SIAM International Conference on

Data Mining. SIAM, pages 415Ű426 (cited page 12).
Meinel, Gotthard, Marco Neubert, and Johannes Reder (2001). ŞThe potential use of very

high resolution satellite data for urban areasâĂŤFirst experiences with IKONOS data,
their classiĄcation and application in urban planning and environmental monitoring”. In:
Regensburger Geographische Schriften 35, pages 196Ű205 (cited page 79).

Moser, Flavia, Recep Colak, Arash RaĄey, and Martin Ester (2009). ŞMining cohesive pat-
terns from graphs with feature vectors”. In: Proceedings of the 2009 SIAM International

Conference on Data Mining. SIAM, pages 593Ű604 (cited pages 3, 13).
Moulick, Sanjib, BC Mal, and S Bandyopadhyay (2002). ŞPrediction of aeration perfor-

mance of paddle wheel aerators”. In: Aquacultural Engineering 25.4, pages 217Ű237 (cited
page 117).

Muzammal, Muhammad and Rajeev Raman (2010). ŞOn probabilistic models for uncertain
sequential pattern mining”. In: International Conference on Advanced Data Mining and

Applications. Springer, pages 60Ű72 (cited page 12).
Ů (2011). ŞMining sequential patterns from probabilistic databases”. In: Pacific-Asia Con-

ference on Knowledge Discovery and Data Mining. Springer, pages 210Ű221 (cited page 12).
Negrevergne, Benjamin, Alexandre Termier, Marie-Christine Rousset, and Jean-François

Méhaut (2014). ŞPara Miner: a generic pattern mining algorithm for multi-core architec-
tures”. In: Data Mining and Knowledge Discovery 28.3, pages 593Ű633 (cited page 126).

Nijssen, Siegfried and Björn Bringmann (2008). ŞWhat is Frequent in a Single Graph?” In:
PAKDD (cited page 38).

Nijssen, Siegfried and Joost N Kok (2004). ŞA quickstart in frequent structure mining can
make a difference”. In: Proceedings of the tenth ACM SIGKDD international conference

on Knowledge discovery and data mining. ACM, pages 647Ű652 (cited page 21).
Nouri, Hamideh, Simon Beecham, Sharolyn Anderson, and Pamela Nagler (2014). ŞHigh

spatial resolution WorldView-2 imagery for mapping NDVI and its relationship to tem-

136 Bibliographie

poral urban landscape evapotranspiration factors”. In: Remote sensing 6.1, pages 580Ű
602 (cited page 87).

Nouri, Hamideh, Sharolyn Anderson, Paul Sutton, Simon Beecham, Pamela Nagler, Christo-
pher J Jarchow, and Dar A Roberts (2017). ŞNDVI, scale invariance and the modiĄable
areal unit problem: An assessment of vegetation in the Adelaide Parklands”. In: Science

of the total environment 584, pages 11Ű18 (cited page 87).
Ozaki, Tomonobu and Minoru Etoh (2011). ŞClosed and maximal subgraph mining in in-

ternally and externally weighted graph databases”. In: Advanced Information Network-

ing and Applications (WAINA), 2011 IEEE Workshops of International Conference on.
IEEE, pages 626Ű631 (cited page 16).

Ozaki, Tomonobu and Takenao Ohkawa (2009). ŞDiscovery of Correlated Sequential Sub-
graphs from a Sequence of Graphs.” In: ADMA. Springer, pages 265Ű276 (cited pages 4,
13, 19).

Papadimitriou, Panagiotis, Ali Dasdan, and Hector Garcia-Molina (2010). ŞWeb graph sim-
ilarity for anomaly detection”. In: Journal of Internet Services and Applications 1.1,
pages 19Ű30 (cited page 127).

Pasquier, Claude, Jérémy Sanhes, Frédéric Flouvat, and Nazha Selmaoui-Folcher (2013).
ŞFrequent pattern mining in attributed trees”. In: Pacific-Asia Conference on Knowledge

Discovery and Data Mining. Springer, pages 26Ű37 (cited page 13).
Pei, Jian, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qiming Chen,

Umeshwar Dayal, and Mei-Chun Hsu (2004). ŞMining sequential patterns by pattern-
growth: The preĄxspan approach”. In: IEEE Transactions on knowledge and data engi-

neering 16.11, pages 1424Ű1440 (cited pages 12, 96).
Pei, Jian, Jiawei Han, and Wei Wang (2007). ŞConstraint-based sequential pattern min-

ing: the pattern-growth methods”. In: Journal of Intelligent Information Systems 28.2,
pages 133Ű160 (cited pages 12, 121).

Pelillo, Marcello (1999). ŞReplicator equations, maximal cliques, and graph isomorphism”.
In: Advances in Neural Information Processing Systems, pages 550Ű556 (cited page 127).

Pinto, Helen, Jiawei Han, Jian Pei, Ke Wang, Qiming Chen, and Umeshwar Dayal (2001).
ŞMulti-dimensional sequential pattern mining”. In: Proceedings of the tenth interna-

tional conference on Information and knowledge management. ACM, pages 81Ű88 (cited
page 12).

Pokou, Yao Jean Marc, Philippe Fournier-Viger, and Chadia Moghrabi (2016). ŞAuthor-
ship Attribution Using Small Sets of Frequent Part-of-Speech Skip-grams.” In: FLAIRS

Conference, pages 86Ű91 (cited page 9).
Prado, Adriana, Baptiste Jeudy, Élisa Fromont, and Fabien Diot (2013). ŞMining spatiotem-

poral patterns in dynamic plane graphs”. In: Intelligent Data Analysis 17.1, pages 71Ű92
(cited page 19).

Prakash, B Aditya, Jilles Vreeken, and Christos Faloutsos (2014). ŞEfficiently spotting the
starting points of an epidemic in a large graph”. In: Knowledge and information systems

38.1, pages 35Ű59 (cited page 13).
Proisy, Christophe, Gaëlle Viennois, Frida Sidik, Ariani Andayani, James Anthony Enright,

Stéphane Guitet, Niken Gusmawati, Hugues Lemonnier, Gowrappan Muthusankar, Ade-

Bibliographie 137

wole Olagoke, et al. (2018). ŞMonitoring mangrove forests after aquaculture abandonment
using time series of very high spatial resolution satellite images: A case study from the
Perancak estuary, Bali, Indonesia”. In: Marine pollution bulletin 131, pages 61Ű71 (cited
page 102).

Ren, Jia-Dong, Jing Yang, and Yan Li (2008). ŞMining weighted closed sequential patterns
in large databases”. In: Fuzzy Systems and Knowledge Discovery, 2008. FSKD’08. Fifth

International Conference on. Volume 5. IEEE, pages 640Ű644 (cited page 12).
Revenga, Carmen (2005). ŞDeveloping indicators of ecosystem condition using geographic in-

formation systems and remote sensing”. In: Regional Environmental Change 5.4, pages 205Ű
214 (cited page 79).

Salama, Nabeil KG and Alexander G Murray (2011). ŞFarm size as a factor in hydrodynamic
transmission of pathogens in aquaculture Ąsh production”. In: Aquaculture Environment

Interactions 2.1, pages 61Ű74 (cited page 120).
Saneifar, Hassan, Sandra Bringay, Anne Laurent, and Maguelonne Teisseire (2008). ŞS 2

MP: similarity measure for sequential patterns”. In: Proceedings of the 7th Australasian

Data Mining Conference-Volume 87. Australian Computer Society, Inc., pages 95Ű104
(cited page 127).

Sanhe, JÃľrÃľmy (2014). ŞContribution Ãă la fouille de donnÃľes spatio-temporelles : appli-
cation Ãă lŠÃľtude de lŠÃľrosion”. PhD thesis. NoumÃľa, Nouvelle CalÃľdonie: Univer-
sitÃľ de la Nouvelle CalÃľdonie, page 140 (cited page 9).

Sanhes, Jérémy, Frédéric Flouvat, Claude Pasquier, Nazha Selmaoui-Folcher, and Jean-
François Boulicaut (2013). ŞWeighted Path as a Condensed Pattern in a Single Attributed
DAG.” In: IJCAI. Volume 13, pages 1642Ű1648 (cited pages 9, 13).

Shackelford, Aaron K and Curt H Davis (2003). ŞA combined fuzzy pixel-based and object-
based approach for classiĄcation of high-resolution multispectral data over urban areas”.
In: IEEE Transactions on GeoScience and Remote sensing 41.10, pages 2354Ű2363 (cited
page 80).

Songram, Panida and Veera Boonjing (2008). ŞClosed multidimensional sequential pattern
mining”. In: International Journal of Knowledge Management Studies 2.4, pages 460Ű479
(cited page 12).

Srikant, Ramakrishnan and Rakesh Agrawal (1996). ŞMining sequential patterns: Gener-
alizations and performance improvements”. In: International Conference on Extending

Database Technology. Springer, pages 1Ű17 (cited pages 9, 10, 96).
Tan, Pang-Ning, Vipin Kumar, and Jaideep Srivastava (2002). ŞSelecting the right interest-

ingness measure for association patterns”. In: Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data mining. ACM, pages 32Ű41
(cited page 19).

Tan, Pang-Ning et al. (2006). Introduction to data mining. Pearson Education India (cited
pages 28, 37).

Tanbeer, Syed Khairuzzaman, Chowdhury Farhan Ahmed, Byeong-Soo Jeong, and Young-
Koo Lee (2009). ŞDiscovering periodic-frequent patterns in transactional databases”. In:
Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, pages 242Ű
253 (cited page 12).

138 Bibliographie

Tucker, Compton J (1979). ŞRed and photographic infrared linear combinations for monitor-
ing vegetation”. In: Remote sensing of Environment 8.2, pages 127Ű150 (cited page 87).

Virdis, Salvatore Gonario Pasquale (2014). ŞAn object-based image analysis approach for
aquaculture ponds precise mapping and monitoring: a case study of Tam Giang-Cau Hai
Lagoon, Vietnam”. In: Environmental monitoring and assessment 186.1, pages 117Ű133
(cited page 80).

Wang, Jianyong, Jiawei Han, and Chun Li (2007). ŞFrequent closed sequence mining without
candidate maintenance”. In: IEEE Transactions on Knowledge and Data Engineering

19.8, pages 1042Ű1056 (cited pages 9, 12, 38).
Wright, Kenneth (2010). ŞAviation system performance during the summer convective weather

season”. In: Journal of the Transportation Research Forum. Volume 45. 3 (cited page 70).
Yan, Xifeng and Jiawei Han (2002). Şgspan: Graph-based substructure pattern mining”. In:

Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on.
IEEE, pages 721Ű724 (cited pages 16, 21, 125).

Yan, Xifeng, Jiawei Han, and Ramin Afshar (2003). ŞCloSpan: Mining: Closed sequential
patterns in large datasets”. In: Proceedings of the 2003 SIAM international conference

on data mining. SIAM, pages 166Ű177 (cited pages 12, 38).
Yi, Shengwei, Tianheng Zhao, Yuanyuan Zhang, Shilong Ma, and Zhanbin Che (2011).

ŞAn effective algorithm for mining sequential generators”. In: Procedia Engineering 15,
pages 3653Ű3657 (cited page 12).

Yin, Junfu, Zhigang Zheng, and Longbing Cao (2012). ŞUSpan: an efficient algorithm for
mining high utility sequential patterns”. In: Proceedings of the 18th ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining. ACM, pages 660Ű668
(cited page 12).

Yoshino, Kunihiko, Sayuri Kawaguchi, Fusayuki Kanda, Keiji Kushida, and Fuan Tsai (2014).
ŞVery high resolution plant community mapping at High Moor, Kushiro Wetland”. In:
Photogrammetric Engineering & Remote Sensing 80.9, pages 895Ű905 (cited page 80).

Yun, Un-Il (2007). ŞWIS: Weighted interesting sequential pattern mining with a similar level
of support and/or weight”. In: ETRI journal 29.3, pages 336Ű352 (cited page 19).

Yun, Unil and John J Leggett (2006). ŞWSpan: Weighted Sequential pattern mining in large
sequence databases”. In: Intelligent Systems, 2006 3rd International IEEE Conference

on. IEEE, pages 512Ű517 (cited page 12).
Zager, Laura A and George C Verghese (2008). ŞGraph similarity scoring and matching”.

In: Applied mathematics letters 21.1, pages 86Ű94 (cited page 127).
Zaharia, Matei, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur

Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin, et al.

(2016). ŞApache spark: a uniĄed engine for big data processing”. In: Communications of

the ACM 59.11, pages 56Ű65 (cited page 127).
Zaki, Mohammed J (2001). ŞSPADE: An efficient algorithm for mining frequent sequences”.

In: Machine learning 42.1-2, pages 31Ű60 (cited page 10).
Zhai, Ke, Xiaoqing Wu, Yuanwei Qin, and Peipei Du (2015). ŞComparison of surface wa-

ter extraction performances of different classic water indices using OLI and TM im-

Conclusions and perspectives 139

ageries in different situations”. In: Geo-spatial Information Science 18.1, pages 32Ű42
(cited page 86).

Zhao, Zhou, Da Yan, and Wilfred Ng (2014). ŞMining probabilistically frequent sequential
patterns in large uncertain databases”. In: IEEE transactions on knowledge and data

engineering 26.5, pages 1171Ű1184 (cited page 12).
Zhu, Zhillang, Limin Yang, Stephen V Stehman, Raymond L Czaplewski, et al. (2000). ŞAc-

curacy assessment for the US Geological Survey regional land-cover mapping program:
New York and New Jersey region”. In: Photogrammetric Engineering and Remote Sensing

66.12, pages 1425Ű1438 (cited page 80).

	List of figures
	List of algorithms
	Introduction
	Context
	Challenges
	Representations of complex spatio-temporal data
	Mining complex spatio-temporal data

	Contributions
	Methodological Contributions
	Contributions to aquaculture monitoring

	Organisation of the manuscript

	State Of The Art
	Sequential pattern mining
	Theoretical framework
	Mining strategies
	Other constraints

	Pattern mining in dynamic graphs
	High-scoring subgraphs
	Weighted frequent sub-graphs
	Frequent pattern mining from a collection of graph sequences and a single dynamic graph
	Dynamic plane subgraphs
	Periodic subgraphs
	Coevolving patterns in dynamic graph
	Dynamic graphs as Boolean Tensors
	Rules to describe the graph evolution

	Pattern mining in dynamic attributed graph
	Triggering pattern mining
	Cohesive co-evolution pattern mining

	Contributions
	Mining recurrent patterns in a dynamic attributed graph
	Dynamic attributed graph
	A new pattern domain and its constraints

	Algorithm
	Intersection of attributed graphs
	Generation of a size-1 pattern
	Extension of a size-1 pattern
	Algorithm RPMiner
	Algorithm time complexity and completeness

	Experimental results

	Application to spatio-temporal data analysis
	Problematic
	Data description
	Identification of aquaculture ponds
	IUC Method
	RGT Method
	EDB Method
	Results

	Automatic identification of pond indicators
	Image dataset transformation
	From cartographies to dynamic attributed graphs
	From cartographies to sequential data

	Pond evolution by sequential pattern mining
	Pond evolution by graph mining

	Conclusions and perspectives
	Conclusions
	Perspectives
	Using other strategies
	Parallel computing
	Mining more global patterns

	Bibliography

