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MINING RECURRENT PATTERNS IN A DYNAMIC ATTRIBUTED GRAPH. Application to aquaculture pond monitoring by satellite images
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1.

Context

The development of sensor technologies and social media have greatly improved information collection and made huge amounts of data available. Faced with increasing data, new technologies are needed to help humans in transforming and resuming automatically these data to useful knowledge. [START_REF] Fayyad | ŞAdvances in knowledge discovery and data mining[END_REF] presented a process for Knowledge Discovery in Databases (KDD). This process could be very complicated and steps may vary according to different nature of data and objective of applications. As shown in Fig. 1.1, the KDD process is an interactive and iterative multi-steps process. This process is composed of the following steps: data selection, pre-processing, transformation, data mining, post-processing and interpretation. The data selection step consists in selecting the sources of information. These sources of information could be structured (e.g. transaction, sequential or graph database) or unstructured data (e.g. books, images or videos). Then, data is preprocessed and transformed into appropriate data structure for mining. Data mining algorithms are chosen according to data types and applications. Finally, domain experts interpret solutions. This iterative process is repeated as long as required. We could note that data mining is just one step of the KDD process. However, it attracts the most attention. So far, many research efforts have been largely dedicated to deĄne more relevant pattern domains and to develop scalable algorithms.

Figure 1.1 Ű Process of the Knowledge Discovery in Databases (KDD) [START_REF] Fayyad | ŞAdvances in knowledge discovery and data mining[END_REF] This work was inspired by the issue of sustainable aquaculture development in Indonesia, which was carried out as part of the "INDESO"1 project (Infrastructure Development of Space Oceanography), in which the laboratory participated through collaboration with the LEAD/IFREMER team. This collaboration resulted in a co-supervision of N. GusmawatiŠs thesis defended in July 2017. This project aims to better manage marine and coastal resources in Indonesia. For this purpose, domain experts have conducted many Ąeld surveys and manual satellite images analysis [START_REF] Gusmawati | ŞSurveying shrimp aquaculture pond activity using multitemporal VHSR satellite images-case study from the Perancak estuary, Bali, Indonesia[END_REF] to study this spatio-temporal data. However, manual analysis and interpretations are very time consuming and can not scale to large data. Moreover, the vast majority of data cannot be processed by humans in a manual way, because of structure complexity of data (sequences, trees and graphs etc.) and large amount of information (e.g. objects, characteristics of objects and relationships between vertices) that they carried. To this aim, we are interested in developing new data mining algorithm permitting to study such complex spatio-temporal data.

Challenges 2.1 Representations of complex spatio-temporal data

Modeling and understanding spatio-temporal data is a major issue for a wide range of applications (e.g. understanding and managing aquaculture ponds, soil erosion monitoring, epidemic monitoring etc.). For example, dengue epidemic is characterized by a set of factors causing the propagation of the disease across time and space. When the epidemic is declared in a quarter, the question is to understand how and according to which factors, it will spread in other quarters. Even if this propagation depends on the direct environment of a zone (water, mangrove etc.) and a set of circumstances evolving over time (humidity, heat, precipitation etc), the dynamics of overall propagation is far from being under control if we consider all the possible interactions between those factors. To deal with such problems, various methods have been developed to help experts to discover interesting knowledge from spatio-temporal data. The objective of these methods is to Ąnd spatio-temporal relations between variables and events without a priori hypothesis. Recently, two data representations are largely used to study spatio-temporal data. The Ąrst is sequential data, where each sequence represents the evolution of an individual object. The second is dynamic labeled graph, where vertices represent objects, edges describe relationships between vertices. Each vertex is labeled by only one attribute. However, these data representations are limited to study complex spatio-temporal data, as mentioned by [START_REF] Moser | ŞMining cohesive patterns from graphs with feature vectors[END_REF]:

Şoften vertex attributes and edges contain complementary information, i.e. neither the relationships can be derived from the vertex attributes nor vice versa. In such scenarios the simultaneous use of both data types promises more meaningful and accurate resultsŞ Hence, a dynamic attributed graph has been proposed to describe many complicated data (e.g. spatio-temporal data, biological data or social data) [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF][START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF][START_REF] Kaytoue | ŞTriggering Patterns of Topology Changes in Dynamic Graphs[END_REF]. This graph permits to provide a richer representation of real-world phenomena where vertices represent objects, edges represent spatial relations or other types of interactions between vertices and attributes describe the characteristics of vertices. In this work, edges and attributes may evolve over time while vertices are Ąxed. As a consequence, this representation is still limited because in many real-world phenomena (s.t. soil erosion monitoring or aquaculture monitoring), vertices (i.e. studied objects) can also change (divide, merge, appear, or disappear) over time. A more general data representation is needed.

Mining complex spatio-temporal data

Many sequential pattern mining algorithms are developed to study spatio-temporal data. For example, [START_REF] Celik | ŞSustained emerging spatio-temporal co-occurrence pattern mining: A summary of results[END_REF][START_REF] Celik | ŞSustained emerging spatio-temporal co-occurrence pattern mining: A summary of results[END_REF][START_REF] Celik | ŞPartial spatio-temporal co-occurrence pattern mining[END_REF] developed an algorithm based on a generate-test strategy to mine spatio-temporal co-occurrence pattern, i.e. subsets of two or more different event-types whose instances are often located in spatial and temporal proximity. It extracts size k spatio-temporal patterns and then uses them to generate size k + 1 candidates. [START_REF] Aydin | ŞSpatiotemporal event sequence mining from evolving regions[END_REF] proposed two Apriori-based algorithms to mine spatio-temporal event sequences. [START_REF] Huang | ŞA framework for mining sequential patterns from spatio-temporal event data sets[END_REF] developed a temporal slicing-based algorithm to mine sequential patterns from spatio-temporal event data sets. It slices Ąrstly the database according to time and hashes events into slices. Then, they mine sequential patterns from each slice. [START_REF] Alatrista-Salas | ŞThe pattern next door: Towards spatio-sequential pattern discovery[END_REF] proposed an algorithm based on pattern-growth approach to discover spatio-sequential patterns. It permits to analyze the evolution of areas considering their features and their direct neighboring environment.

Besides, a large amount of graph mining algorithms have been proposed in the literature and could be used to discover interesting patterns from spatio-temporal data. For example, (Inokuchi and Washio, 2010b) developed a method to mine frequent patterns called FRISSs (frequent relevant induced subgraph subsequence) efficiently from labeled graph sequences. They Ąrst construct union graphs for all graph sequences, then all frequent, induced subgraphs are extracted from these union graphs by using a graph mining algorithm based on depth-Ąrst strategy. In [START_REF] Ozaki | ŞDiscovery of Correlated Sequential Subgraphs from a Sequence of Graphs[END_REF], authors developed an algorithm to discover correlated sequential subgraphs from a sequence of labeled graphs. They developed a level-wise algorithm CorSSS (based on the Apriori algorithm) based on a tree shaped data structure that uses the generality ordering among patterns.

However, classical sequence mining algorithms and graph mining algorithms can hardly be adapted to study a dynamic attributed graph, because it is much more complex compared with sequential data (do not consider relations between objects) or dynamic labeled graph (only consider one attribute per vertex).

To the best of our knowledge, few methods have been proposed to mine a dynamic attributed graph. Mining such graphs is a complex task because every vertex is associated to a set of attributes (instead of a single label). [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF] extracted cohesive co-evolutions in a dynamic attributed graph. These patterns represent a set of vertices with the same attributes and a similar neighborhood over a set of timestamps (vertices and attributes were Ąxed). The authors extended their work in [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF] to integrate constraints on the graph topology and on the attribute values. However, in these works, all vertex attributes have to follow the same trend over time. Moreover, they donŠt take temporal evolutions of vertices into account. In [START_REF] Kaytoue | ŞTriggering Patterns of Topology Changes in Dynamic Graphs[END_REF], the authors deĄne the triggering pattern problem which allows to Ąnd temporal relationships between the vertex attributes and their topological properties (degree, betweeness, number of cliques etc.). The authors design an algorithm TRIGAT to mine triggering patterns using a patterngrowth approach. However, it doesnŠt consider the pattern neighbors neither their evolutions over time.

3.

Contributions

In this thesis, my contributions are of two types:

Methodological Contributions

In our work, we deĄne a new pattern domain in a dynamic attributed graph, more precisely, a sequence of attributed graph called recurrent pattern. This kind of pattern extracted form a dynamic attributed graph describes temporal evolutions of connected vertices appearing in the same way over time. They are in some ways the sequences of connected subgraphs verifying several constraints. These constraints aim to reduce the search space and extract meaningful patterns. We propose to use two constraints considering the graph structure, i.e. the connectivity and the cohesiveness. Temporal continuity enables to target patterns which describe evolutions around a common core of individuals. Gap allows to study evolutions in a short term and in a long term. Moreover, frequency is used to calculate the number of occurrences of patterns.

We also propose a novel algorithm RPMiner to extract recurrent patterns in a dynamic attributed graph. Different from other strategies based on depth-Ąrst search, breadth-Ąrst search, successive projections of data or generate-test, our algorithm is based on graph intersections at different times. Size-i patterns generated by intersecting graphs at times T i containing t i are extended by the patterns generated at times T i+1 . Thus, times are processed incrementally and patterns of different sizes can be generated at each iteration. The advantage of this approach it to avoid the generation of a large number of patterns which donŠt verify the constraints and to explore the dynamic attributed graph in an incremental manner. Our algorithm permits to extract recurrent patterns.

To study the performances of our approach, several experimentations are conducted on both syndetic and real-world datasets. They demonstrate that our generic algorithm enables to discover relevant patterns efficiently.

Contributions to aquaculture monitoring

To study evolutions of aquaculture ponds, we develop a complete KDD process: from preprocessing to visualization and interpretation of results. Firstly, we propose an automatic and accurate method to extract aquaculture ponds from very complicated and low contrast satellite images. Secondly, we develop several methods to identify pondsŠ attributes. Thirdly, two automatic processes are developed to transform images of aquaculture ponds to sequential data and a dynamic attributed graph. Fourthly, we apply a sequence mining algorithm to study temporal evolutions of aquaculture ponds. In parallel, we also apply our algorithm, RPMiner, which considers both spatial and temporal aspects. Finally, the extracted patterns are visualized on original satellite images and validated by domain experts. Results

show that recurrent patterns extracted by our RPMiner algorithm enable domain experts to identify farms, understand various managements of farmers and study the spread of disease and mangrove over adjacent ponds. It could give experts a new insight to study such spatio-temporal phenomena.

4.

Organisation of the manuscript

In chapter 2, we review existing approaches to mine patterns in sequence data in section 2.1. Section 2.2 presents a survey about dynamic labeled graph mining. Finally, we present related works on dynamic attributed graphs (section 2.3).

Chapter 3 details our contributions from a methodological point of view. In section 3.1, we deĄne a new pattern domain and some interesting constraints. Then, in section 3.2, an algorithm is presented and its performances are evaluated using artiĄcial datasets. On the other hand, experiments on two real world datasets conĄrm the relevance of extracted patterns.

Chapter 4 presents a detailed application dealing with aquaculture monitoring in Indonesia. Section 4.1 introduces the problematic. In section 4.2, we describe the aquaculture farming data. Section 4.3 presents the EDB method to segment satellite images and compares it with two existing segmentation methods. Then, in Section 4.4, we present automatic methods to identify pond attributes. Section 4.5 details our methods that transform this time series of satellite images into sequential data and a dynamic attributed graph. Then, we visualize and interpret the results obtained with sequence mining algorithm (section 4.6) as well as the results extracted by our algorithm RPMiner (section 4.7). Finally, we conclude this part and compare these two different data mining methods.

In chapter 5, we conclude this thesis by giving a summary of the thesis and some perspectives for future work. 

Chapter 2

State Of The Art

1.

Sequential pattern mining

Theoretical framework

Sequential pattern mining methods are widely applied in various areas such as market basket analysis [START_REF] Srikant | ŞMining sequential patterns: Generalizations and performance improvements[END_REF], bioinformatics [START_REF] Wang | ŞFrequent closed sequence mining without candidate maintenance[END_REF], web usage analysis [START_REF] Iváncsy | ŞFrequent pattern mining in web log data[END_REF]), text analysis [START_REF] Pokou | ŞAuthorship Attribution Using Small Sets of Frequent Part-of-Speech Skip-grams[END_REF] and time series of satellite images [START_REF] Sanhes | ŞWeighted Path as a Condensed Pattern in a Single Attributed DAG[END_REF][START_REF] Sanhe | ŞContribution Ãă la fouille de donnÃľes spatio-temporelles : application Ãă lŠÃľtude de lŠÃľrosion[END_REF]. Discovering frequent subsequences in a set of sequences has been an important research topic. Let I = ¶i 1 , i 2 , ..., i n ♢ be the set of all items, an itemset is a subset of I. Without loss of generality, we assume that the items are listed in alphabetical order. A sequence is an ordered list of itemsets s =< I 1 , I 2 , ..., I n > such that

I k ⊆ I (1 ≤ k ≤ n). A sequence is said to be of length k or k-sequence if it contains k items.
A sequence database SDB is a set of sequences SDB =< s 1 , s 2 , ..., s m >. Each sequence has an identiĄer (SIDs) ∈ ¶1, 2, ..., m♢. For example, Table 2.1 shows a sequence database composed of Ąve sequences with SID ∈ ¶1, 2, 3, 4, 5♢. A sequence

s b =< B 1 , B 2 , ..., B m > is said to contain another sequence s a =< A 1 , A 2 , ..., A n > if and only if there exists integers 1 ≤ i 1 < i 2 < ... < i n ≤ m such that A 1 ⊆ B i 1 , A 2 ⊆ B i 2 ,..., A n ⊆ B im .
For example, in Table 2.1, the sequence < ¶a, c♢, ¶a, b♢, ¶c, f ♢, ¶e, f ♢ > contains the sequence < ¶c♢, ¶f ♢, ¶e♢ > but not the sequence < ¶c♢, ¶f ♢, ¶d♢ >. The support of a sequence s a in a sequence database is deĄned as the number of sequences containing s a , i.e., sup(s a ) = ¶s♣s a ⊆ S ∧ s ∈ SDB♢. In Table 2.1, the support of the sequence < ¶a, c♢, ¶c, f ♢, ¶f ♢ > in the database is two because this sequence is contained in two sequences (sequences 1 and 3).

Table 2.1 Ű A sequence database

SID Sequence 1 < ¶a, c♢, ¶a, b♢, ¶c, f ♢, ¶e, f ♢ > 2 < ¶a, d♢, ¶a, c♢, ¶d, f ♢ > 3 < ¶a, c♢, ¶a, c, e♢, ¶c, e, f ♢, ¶f ♢ > 4 < ¶c♢, ¶a, d♢, ¶b, e♢, ¶e♢ > 5 < ¶b, d♢, ¶c, f ♢ >
Vertical databases are also widely used to represent a sequence database. In a vertical database, every item is associated with an ID-list. For every item in the database, its IDlist is a set of < SID (SequenceID), EID (EventID) > which indicates where each item appears in the sequence database. For example, Fig. 2.1 shows the vertical database of the sequence database displayed in Table 2.1. The ID-list < SID, EID > of item d indicates that d appears in the Ąrst and the third itemset of sequence 2 and in the second itemset of sequence 4. 

Sequential pattern mining

Mining strategies

Three main approaches were proposed to mine sequential patterns. Some of them use a breadth-Ąrst search strategy such as GSP [START_REF] Srikant | ŞMining sequential patterns: Generalizations and performance improvements[END_REF] and AprioriALL [START_REF] Agrawal | ŞMining sequential patterns[END_REF]. For example, algorithm GSP Ąrst scans the database to generate frequent 1-sequences and keep them in memory. Then it uses the k-sequences to generate sequences of length k + 1. This recursive process stops until no patterns could be generated. However, this strategy has several drawbacks. Firstly, a large number of database scans is needed to calculate the support of each candidate pattern. Secondly, GSP could generate nonexistent patterns in the database because candidates are generated just by combining smaller pattern without accessing the database. Finally, it requires a large amount of memory because it keeps all frequent k-sequences in memory to generate (k + 1)-length patterns. Some algorithms use another strategy. They traverse the search space using a depth-Ąrst search strategy such as SPADE [START_REF] Zaki | ŞSPADE: An efficient algorithm for mining frequent sequences[END_REF], SPAM [START_REF] Ayres | ŞSequential pattern mining using a bitmap representation[END_REF], CM-Spam (Fournier-Viger et al., 2014) and CM-Spade [START_REF] Fournier-Viger | ŞFast vertical mining of sequential patterns using co-occurrence information[END_REF]. In [START_REF] Zaki | ŞSPADE: An efficient algorithm for mining frequent sequences[END_REF], authors develop a depth-Ąrst search algorithm SPADE to discover frequent sequential patterns from a vertical database. The advantage of using vertical database is that the IDList of any pattern allows to directly calculate its support without accessing database. Moreover, any (k + 1)-sequence generated by extending a k-sequence with an item i, can be created without scanning the database (join the ID-list of k-sequence with the ID-list of item i). Thus, only the intermediate id-lists for two consecutive levels (k-sequences and (k + 1)-sequences) are maintained in memory. Consequently, Spade is much more efficient than previous breadth-Ąrst search algorithms.

However, one of the main limit of Spade is that it is not efficient to mine a sequence database containing long sequences, because IDLists could be very large and as a conse-quence, the join operation of IDLists will be very costly. For this purpose, two algorithms bitSPADE [START_REF] Aseervatham | ŞbitSPADE: A lattice-based sequential pattern mining algorithm using bitmap representation[END_REF] and SPAM [START_REF] Ayres | ŞSequential pattern mining using a bitmap representation[END_REF] were proposed based on a bitmap representation. Each bitmap associated with an item has a bit which indicates the item position in the dataset. If item i appears in the tth itemset of sequence j, then the tth bit of sequence j for item i is set to one and otherwise to zero. Table 2.2 shows an example of bitmap representation of the sequence dataset in Table 2.1. The vertical bitmap of each item is composed of Ąve sections where each section corresponds to a sequence. For example, < 1, 2 >, i.e., the second itemset of the Ąrst sequence contains items a and b, so the second bits of the Ąrst sequence for items a and b are set to 1. SPAM and bitSPADE are much more efficient than SPADE in terms of runtime and memory usage particularly on dense or long sequences (many bits of items of this data are set to 1). However, both SPAM and bitSPADE are based on a generate-test strategy, so they inevitably generate a huge amount of infrequent candidates. To solve this problem, in [START_REF] Fournier-Viger | ŞFast vertical mining of sequential patterns using co-occurrence information[END_REF], authors develop CM-Spam and CM-Spade algorithms based on the concept of co-occurrence pruning. Firstly, they scan the whole database to generate a structure called the Co-occurrence MAP (CMAP) composed of all frequent 2-sequences. Then in the search process, for each considered pattern s a , if its two last items are not frequent 2-sequences, the pattern s a is infrequent and there is no need to perform the join operation. Thus in practice, CM-Spam and CM-Spade avoid testing lots of infrequent candidates. CM-Spam [START_REF] Fournier-Viger | ŞFast vertical mining of sequential patterns using co-occurrence information[END_REF] and CM-Spade [START_REF] Fournier-Viger | ŞFast vertical mining of sequential patterns using co-occurrence information[END_REF] are the most efficient algorithms, they outperform all current sequence mining algorithms by more than one order of magnitude. Pattern-growth strategies such as PreĄxSpan [START_REF] Pei | ŞMining sequential patterns by patterngrowth: The preĄxspan approach[END_REF] and FreeSpan [START_REF] Han | ŞFreeSpan: frequent pattern-projected sequential pattern mining[END_REF] were also proposed. Their approach is based on depth-Ąrst exploitation and database projections. In [START_REF] Pei | ŞMining sequential patterns by patterngrowth: The preĄxspan approach[END_REF], authors propose a pattern-growth algorithm named PreĄxSpan to mine frequent sequential patterns from in an horizontal database. PreĄxSpan scans Ąrst the database to generate all 1-sequence patterns. Then PreĄxSpan constructs projected database based on the preĄx of the pattern being extended. PreĄxSpan extends the preĄx with the items which are frequent in the projected database to form longer sequential patterns. This process continues until no more patterns could be extended. The advantage of PreĄxSpan is that it generates only patterns occurring in the database. However, a serious problem of PreĄxSpan and all pattern-growth algorithms is that constructing projected databases is very time-consuming and could take a huge amount of space in memory.

Other constraints

These algorithms may Ąnd a huge amount of patterns which is time-consuming and difficult to analyze. To reduce the number of patterns, three condensed representations have been studied: closed patterns, maximal patterns and generator sequential patterns. A closed sequential pattern is a sequential pattern that has no supersequence with the same support [START_REF] Huang | ŞCOBRA: closed sequential pattern mining using bi-phase reduction approach[END_REF][START_REF] Wang | ŞFrequent closed sequence mining without candidate maintenance[END_REF][START_REF] Yan | ŞCloSpan: Mining: Closed sequential patterns in large datasets[END_REF]. A maximal sequential pattern is a sequential pattern such that it is not contained in any other sequential patterns [START_REF] Lu | ŞAprioriAdjust: An efficient algorithm for discovering the maximum sequential patterns[END_REF][START_REF] Luo | ŞEfficient mining of maximal sequential patterns using multiple samples[END_REF][START_REF] Lin | ŞFast mining maximal sequential patterns[END_REF]. A generator sequential pattern is a sequential pattern that have no subsequence having the same support [START_REF] Lo | ŞMining and ranking generators of sequential patterns[END_REF][START_REF] Gao | ŞEfficient mining of frequent sequence generators[END_REF][START_REF] Yi | ŞAn effective algorithm for mining sequential generators[END_REF].

Other constraints have been integrated into the mining process to reduce the search space, reduce the number of patterns and extract more interesting patterns. For example, in [START_REF] Fournier-Viger | ŞA knowledge discovery framework for learning task models from user interactions in intelligent tutoring systems[END_REF], authors extend the algorithms BIDE by integrating gap constraints (minimum and maximum time interval between two consecutive itemsets in sequential pattern) and duration constraint (maximum time interval between the Ąrst itemset and the last itemset of a sequential pattern). Gap constraint can be very useful because it permits to follow consecutive evolutions or study seasonal evolutions according to different applications. In [START_REF] Pei | ŞConstraint-based sequential pattern mining: the pattern-growth methods[END_REF], authors propose several constraints in patterngrowth algorithms such as item constraint (items that must appear or not in every extracted pattern) and length constraints (minimum/maximum number of items per pattern). This constraint helps study the evolution having at least one special item (special items) which is (are) more important than other items. For example, for a time series of aquaculture ponds satellite images, experts are especially interested in patterns describing ponds with activity and without activity because activity is the key factor to study the evolution. Several extensions of sequential pattern mining problems have also received much attention such as multi-dimensional sequential pattern mining [START_REF] Pinto | ŞMulti-dimensional sequential pattern mining[END_REF][START_REF] Songram | ŞClosed multidimensional sequential pattern mining[END_REF], top-k sequential pattern mining [START_REF] Fournier-Viger | ŞTKS: efficient mining of top-k sequential patterns[END_REF], weighted sequential pattern mining [START_REF] Yun | ŞWSpan: Weighted Sequential pattern mining in large sequence databases[END_REF][START_REF] Ren | ŞMining weighted closed sequential patterns in large databases[END_REF], high-utility sequential pattern mining [START_REF] Yin | ŞUSpan: an efficient algorithm for mining high utility sequential patterns[END_REF][START_REF] Lan | ŞApplying the maximum utility measure in high utility sequential pattern mining[END_REF], uncertain sequential pattern mining [START_REF] Muzammal | ŞOn probabilistic models for uncertain sequential pattern mining[END_REF][START_REF] Muzammal | ŞOn probabilistic models for uncertain sequential pattern mining[END_REF][START_REF] Zhao | ŞMining probabilistically frequent sequential patterns in large uncertain databases[END_REF] and periodic pattern mining [START_REF] Tanbeer | ŞDiscovering periodic-frequent patterns in transactional databases[END_REF][START_REF] Kiran | ŞMining rare periodic-frequent patterns using multiple minimum supports[END_REF][START_REF] Kiran | ŞEfficient discovery of periodic-frequent patterns in very large databases[END_REF]. These extensions permit to model sequential database though different ways and discover more pertinent and meaningful patterns according to different characteristics of data and for special needs.

2.

Pattern mining in dynamic graphs

Graphs are more and more playing a prominent role in modeling complex structures. A large number of graph mining algorithms have been developed [START_REF] Aggarwal | Managing and Mining Graph Data[END_REF][START_REF] Cook | Mining graph data[END_REF] for various application domains such as remote sensing, social networks, epidemiology and bioinformatics [START_REF] Berlingerio | ŞFoundations of multidimensional network analysis[END_REF][START_REF] Prakash | ŞEfficiently spotting the starting points of an epidemic in a large graph[END_REF][START_REF] Sanhes | ŞWeighted Path as a Condensed Pattern in a Single Attributed DAG[END_REF]. Various types of graphs have been studied in the literature such as static graphs [START_REF] Inokuchi | ŞAn apriori-based algorithm for mining frequent substructures from graph data[END_REF][START_REF] Huan | ŞEfficient mining of frequent subgraphs in the presence of isomorphism[END_REF][START_REF] Kuramochi | ŞAn efficient algorithm for discovering frequent subgraphs[END_REF][START_REF] Deshpande | ŞFrequent substructure-based approaches for classifying chemical compounds[END_REF], multidimensional graphs [START_REF] Berlingerio | ŞFoundations of multidimensional network analysis[END_REF] and attributed graphs [START_REF] Moser | ŞMining cohesive patterns from graphs with feature vectors[END_REF][START_REF] Khan | ŞTowards proximity pattern mining in large graphs[END_REF][START_REF] Pasquier | ŞFrequent pattern mining in attributed trees[END_REF]. Recently, dynamic labeled graphs have received much attention (Ahmed and Karypis, 2015a;[START_REF] Berlingerio | ŞMining graph evolution rules[END_REF][START_REF] Borgwardt | ŞPattern mining in frequent dynamic subgraphs[END_REF][START_REF] Lahiri | ŞMining periodic behavior in dynamic social networks[END_REF][START_REF] Bogdanov | ŞMining heavy subgraphs in time-evolving networks[END_REF]Inokuchi and Washio, 2010b;[START_REF] Ozaki | ŞDiscovery of Correlated Sequential Subgraphs from a Sequence of Graphs[END_REF]. However, to our best knowledge, few methods have been proposed to mine a dynamic attributed graph which provides a richer information.

In this chapter, we present related works on dynamic graph. It can be categorized into two models, i.e., a single dynamic graph (network) and a graph sequence database (a collection of graph sequences).

A single dynamic graph (network) is a sequence of labeled graphs in which vertices represent entities, edges denote the relationships or connections between entities [START_REF] Ozaki | ŞDiscovery of Correlated Sequential Subgraphs from a Sequence of Graphs[END_REF]. Vertices and edges could appear and disappear over time. Fig. 2.2 shows an example of labeled dynamic graph. It is a sequence of graphs G = ⟨G t 1 , G t 2 , ..., G tmax ⟩ which represents the evolution of a graph over a set of time T = ¶t 1 , . . . , t max ♢. For each time t ∈ T , G t = (V t , E t , λ t ) is a graph where V t ⊆ V is the set of vertices at time t, E t ⊆ V t × V t is the set of edges at time t, with a labeling function λ: V ∪E → , assigning to vertices and edges labels from an alphabet . These labels represent properties, and for simplicity we assume that they do not change with time. A dynamic graph is used as a general representation for many real world applications. For example, Fig. 2.2 could represent a social network, where each vertex is a person, edges describe interactions between humans. Vertices increase or decrease when a person joins or leaves the community in the social network, edges evolve when relationships are created/deleted.

A graph sequence database is composed of a collection of graph sequences [START_REF] Inokuchi | ŞA fast method to mine frequent subsequences from graph sequence data[END_REF]. Fig. 2.3 depicts a database of two graph sequences d 1 and d 2 where

d 1 =< g (1) 1 g (2) 1 g (3)
1 g (4) > and

d 1 =< g (1) 2 , g (2) 2 , g (3) 2 , g (4)
2 >. Each graph sequence is an ordered list of labeled graphs i.e. d =< g (1) , g (2) , ... , g (tmax) >. The total number of vertices in the graph sequence l j=1 ♣V (g (j) )♣ is the size of the graph sequence and each vertex v in g (j) has an unique ID. Many real world applications can generate such database. For example, an email Mining a single dynamic graph and mining a collection of graph sequences have been studied separately. For a single dynamic graph, the frequency of a pattern is the number of its occurrences (i.e., embeddings) in this graph. While in a graph sequence database, the frequency of a pattern is deĄned as the number of graph sequences that the pattern occurs in. Algorithms developed to mine a graph sequence database is not adapted to mine a single dynamic graph, while the latter algorithms can be used to study a graph sequence database.

Many different methods have been designed to study dynamic labeled graph. Some studies focus on extracting high-scoring subgraphs, i.e. highest-scoring (based on edge weights) connected subgraph over a time sub-interval [START_REF] Bogdanov | ŞMining heavy subgraphs in time-evolving networks[END_REF]. Some studies focus on mining frequent subgraphs [START_REF] Jiang | ŞFrequent sub-graph mining on edge weighted graphs[END_REF], i.e., subgraphs whose support are greater than a user deĄned threshold. Some studies aim at discovering the evolution of subgraphs through time [START_REF] Holder | ŞLearning patterns in the dynamics of biological networks[END_REF], i.e. how the subgraphs structure change between consecutive timestamps. Some other studies discover δ-contiguous closed 3-cliques patterns (Cerf et al., 2009b), i.e. maximal sets of densely connected vertices that run along some nearly contiguous timestamped graphs.

High-scoring subgraphs

In [START_REF] Bogdanov | ŞMining heavy subgraphs in time-evolving networks[END_REF], authors deĄne the problem of extracting high-scoring connected temporal subgraphs (HDS). The score is the sum of edge weights and edge weights evolve through time, i.e., it is a dynamic graph with numeric edge labels. Approaches for Ąnding high-scoring subgraphs have various applications. For example, ENRON is a dataset [START_REF] Diesner | ŞCommunication networks from the Enron email corpus âĂIJItŠs always about the people. Enron is no differ-entâĂİ[END_REF] where vertices are employees. An edge exists if there is at least one message between two personal accounts and edge weight is the number of messages. High-scoring subgraphs could represent communication workĆow. Given an edge-weighted evolving network

G = ⟨G t 1 , G t 2 , ..., G tmax ⟩ with λ = (λ 1 , ..., λ tmax ) s.t. λ i : E → ¶-1, 1♢. A temporal subgraph is a pair (G, [i, j]) where G(V, E, λ) is a connected graph and [i, j] is a sub-interval of [1, t max ].
The HDS problem is then to extract the complete set of temporal sub-graphs that maximizes the score, i.e., the sum of all edge-weights of the pattern. For example, as shown in Fig. 2.4 (a), an edge-evolving network could represent a traffic Ćow on a freeway network over time [START_REF] Bickel | ŞTraffic Ćow on a freeway network[END_REF]. Solid lines (edges with score 1) represent low occupancy, i.e., traffic Ćows freely, and dashed lines (edges with score -1) signify that Ćow and velocity decreases. At the beginning, freeways between districts (A, B), (A, C) and (B, E) are at low occupancy, then freeway (A, C) remains at low occupancy and terminates at t 5 . The heaviest dynamic subgraph over the sub-interval [1,3] is the set of edges ¶(A, B), (A, C), (B, E)♢ with a score of 5 and the heaviest dynamic subgraph over the sub-interval [1,5] is the set of edges ¶(A, B), (A, C), (B, E), (D, E)♢ with a score of 8.

The authors develop an algorithm based on Ąlter-and-verify strategy to extract heaviest dynamic subgraph that scales to large networks with long evolution extent. It is very efficient by using tight upper bounds to prune irrelevant time intervals instead of enumerating all possible intervals.

Weighted frequent sub-graphs

In [START_REF] Jiang | ŞFrequent sub-graph mining on edge weighted graphs[END_REF], authors aim to extract weighted frequent subgraphs from a single sequence of edge weighted graphs. For many applications, a frequent subgraph with a higher edge weight value is more meaningful than others with the same support threshold. A sequence of edge weighted graphs G is deĄned as a labeled graph where V t is a set of vertices, E t is a set of edges and λ t is a function that associates edges with a set of numeric labels. The authors propose three edge weighting schemes (Average Total Weighting, Affinity Weighting and Utility Based Weighting) and incorporate three strategies into three weighted variations of the gSpan algorithm (ATW-gSpan, AW-gSpan, and UBW-gSpan) to mine weighted frequent subgraphs. Instead of searching graphs and testing isomorphism, gSpan [START_REF] Yan | Şgspan: Graph-based substructure pattern mining[END_REF] constructs canonical DFS (depth Ąrst search) code for each graph. Based on these codes, gSpan adopts the depth-Ąrst search strategy to extract frequent subgraphs efficiently. Compared with the gSpan algorithm, these three approaches are mainly designed to reduce search space by discovering the most relevant sub-graphs. The proposed algorithms are more efficient than gSpan in terms of runtime and memory use.

G = ⟨G t 1 , G t 2 , ..., G tmax ⟩. G t = (V t , E t , λ t ) is
The frequent subgraphs extracted by previous methods consider only supports or weights. However, such patterns can be meaningless if it has a low affinity value, i.e. internal elements (edges) of the pattern are scarcely correlated even though it satisĄes minimum support and weight thresholds at the same time. In other word, previous algorithms [START_REF] Günnemann | ŞSubgraph mining on directed and weighted graphs[END_REF][START_REF] Jiang | ŞFrequent sub-graph mining on edge weighted graphs[END_REF][START_REF] Ozaki | ŞClosed and maximal subgraph mining in internally and externally weighted graph databases[END_REF] could consume much time and memory in conducting graph isomorphic test to Ąnd useless sub-graphs (a NP-hard problem).

As an example, Fig. 2.5 illustrates an email communication database, the table on the right shows edge supports (i.e. the number of email communications) and edge attributes represent corresponding weights. If we do not apply affinity measures (support affinity and weight affinity), all the super graphs extracted from the graph are valid. However, if we consider affinity conditions, some needless patterns will not be generated. As shown in the Given an edge weighted graph, the mining problem consists in extracting all sub-graphs whose support affinities and weight affinities are both greater or equal to two minimum affinities thresholds. The authors propose an efficient depth-Ąrst search algorithm MWSA to extract valid sub-graphs by pruning useless patterns. By using the affinity measures and their anti-monotone properties, MWSA permits to prune patterns efficiently.

Frequent pattern mining from a collection of graph sequences and a single dynamic graph

A graph sequence database is composed of a collection of labeled graph sequences < sid, d >, where sid is the ID of a graph sequence and d is a graph sequence. Each graph sequence is an ordered list of labeled graphs i.e., d =< g (1) , g (2) , ... , g (tmax) >. Many real world applications can generate such databases. For example, an email communication network can be represented by daily/weekly graph sequence data, where vertices are persons identiĄed by a unique ID and edges represent personal communications by email. The total number of days/weeks is the number of sequences.

In [START_REF] Inokuchi | ŞA fast method to mine frequent subsequences from graph sequence data[END_REF], the authors propose a method GTRACE (Graph Transformation sequence mining) based on a depth-Ąrst strategy, to mine frequent sequences of graphs from a graph sequence database. They deĄne transformation rules that represent graphs under the assumption that the change over sequential graphs is gradual. However, GTRACE becomes intractable for Enron graph sequences containing more than 7 graphs and 100 unique vertices. To solve this issue, the same authors propose a more efficient method (Inokuchi and Washio, 2010a) to Ąnd frequent patterns called FTSs (Frequent Transformation Subsequences) from longer (more graphs) and larger (more vertices) graph sequences. Given a graph sequence d =< g (1) g (2) ... g (tmax) >, the difference between two consecutive graphs is a sequence of small changes s (j) = < g (j,1) , ..., g (j,m i ) > called intrastate. It is a set of transformations between g i and g i+1 . Each transformation represents insertion, deletion or relabeling of a vertex or an edge. Then, frequent patterns are extracted based on transformation rules.

However, change between two consecutive graphs g i and g i+1 has to be gradual. To overcome this limit, the authors (Inokuchi and Washio, 2010b) improve their method to mine frequent patterns relevant induced subgraph subsequences from graph sequences containing long sequences and large graphs efficiently. They Ąrst construct a union graph (a graph composed of all vertices and edges of these graphs) for each graph sequence. Then all frequent induced subgraphs are extracted from these union graphs by using a conventional graph mining algorithm. A subgraph g ′ of g is an induced graph if and only if two vertices in V (g ′ ) are adjacent in both g ′ and g. A subgraph sequence d =< g (1) , g (2) , ... , g (l) > is called relevant if the union graph g u (d) of d is a connected graph, where g u (d) = (V (g u (d)), E(g u (d))) is deĄned as follows:

V (g u (d)) = j=1,...,l ¶id(v)♣v ∈ V (g (j) )♢ E(g u (d) = j=1,...,l ¶(id(v), id(v ′ ))♣(v, v ′ ) ∈ E(g (j)
)♢ For example, as shown in Fig. 2.6 (a), the vertices with unique IDs 1 and 4 are not connected directly in any of the three graphs. However, they are connected to the vertex 2 in the second graph and the Ąrst graph respectively. So vertices 1 and 4 are relevant via the vertex 3. Given a graph sequence database and a minimum support threshold, the aim is thus to extract all frequent patterns whose union graphs are connected. The authors (Inokuchi and Washio, 2010b) propose FRISSMiner algorithm based on depth-Ąrst search strategy to mine Frequent Relevant, and Induced Subgraph Subsequences. FRISSMiner is more efficient than GTRACE in terms of runtime and memory usage because it only generates patterns whose union graphs are connected and do not verify the connec-tivity of the vertices in each graph. It allows to study graph sequences containing longer sequences (20 graphs) and larger graphs (5000 unique vertices) compared with [START_REF] Inokuchi | ŞA fast method to mine frequent subsequences from graph sequence data[END_REF]. However, relevant patterns are not actually "relevant" for many applications because extracted patterns are not necessarily connected graphs. For example, Fig. 2.7 (a) could represent a spatio-temporal database dealing with aquaculture monitoring. It is composed of two sequences where each vertex is assigned to an aquaculture pond and each edge represents the spatial relationship between ponds. One label of the vertex-labels set {Active, Semiactive, Abandoned} is assigned to each pond. It is interesting to understand how a set of adjacent ponds evolve over time, because adjacent ponds always interact with each other. However, a relevant subgraph subsequence pattern may not be interesting if only union graphs are connected while subgraphs are not connected. Fig. 2.7 (b) shows a frequent relevant and induced subgraph subsequence extracted from the database. Although the union graphs of d 1 and d 2 are both connected, the edge (1,2) is not connected in g

(2) 1 , g (3) 1 and g (2)
2 and the edge (2,4) is not connected in g

(1) 1 , g (3) 1 and g (1)
2 .

In [START_REF] Ozaki | ŞDiscovery of Correlated Sequential Subgraphs from a Sequence of Graphs[END_REF], the authors develop an algorithm based on a levelwise strategy to discover correlated sequential subgraphs from a single sequence of labeled graphs i.e. frequent sequences of subgraphs whose components are correlated with each other. They propose a correlation criterion named (m, θ, k). m represents the size of subsequences, θ is the minimum threshold for the correlation [START_REF] Tan | ŞSelecting the right interestingness measure for association patterns[END_REF] which aims to verify a strong relationship between two components of a pattern and k is a positive integer accessing the maximum number of exceptional subgraphs (uncorrelated subgraph in the pattern with respect to the minimum correlation threshold θ).

Given a graph sequence G, a minimum support threshold σ (1/♣G♣ ≤ σ ≤ 1), a minimum correlation threshold θ (0 ≤ θ ≤ 1), a size of subgraphs of pattern m ≥ 1 and a maximum exceptional subgraphs allowed k ≥ 1, then the problem is to enumerate the complete set of successive correlated sequential subgraphs. The authors develop a levelwise algorithm CorSSS using hash tables to store sets of preĄx and postĄx trees.

In order to discover more correlated patterns, several measures are proposed in [START_REF] Yun | ŞWIS: Weighted interesting sequential pattern mining with a similar level of support and/or weight[END_REF], such as sequential support-conĄdence (s-conĄdence) and sequential weight-conĄdence (w-conĄdence). S-conĄdence is the ratio of the minimum support of items within a given pattern to the maximum support of items within this pattern. It describes the s-affinity among items within pattern. A sequential pattern is a sequential s-affinity pattern if its s-conĄdence is no less than a minimum s-conĄdence. W-conĄdence is the ratio of the minimum weight of items within a given pattern to the maximum weight of items within this pattern. It reĆects the w-affinity among items within sequence. A sequential pattern is a sequential w-affinity pattern if its w-conĄdence is no less than the minimum weight conĄdence. The authors [START_REF] Yun | ŞWIS: Weighted interesting sequential pattern mining with a similar level of support and/or weight[END_REF] develop a new algorithm based on successive projections to extract weighted sequential patterns with similar support and/or weight. These measures give a balance between support measure and weight measure.

Dynamic plane subgraphs

In [START_REF] Prado | ŞMining spatiotemporal patterns in dynamic plane graphs[END_REF], the authors are interested in studying dynamic plane graphs where each graph is a single sequence of labeled ordered graph constructed by deĄning the circular 

(P ) = ¶(i, f )♣f is an occurrence of P in G i ♢,
where P is a plane subgraph isomorphism to G i . Two occurrences are close if their spatial distance is lower than a threshold ϵ and their temporal distance is lower than a threshold τ . The connected component of occurrences of P is then deĄned as a spatiotemporal pattern based on P , where two occurrences are connected if they are close. As an example, in video applications, each video frame can be regarded as a plane graph in which each vertex is an object (a segmented region of the frame) associated with spatial information such as the barycenter of the object, and edges represent spatial relationships between vertices. Finding spatio-temporal patterns permit to track a given object in a video over time. Fig. 2.8 shows a video of four frames. As we can see, occurrences of 1, 2 and 2, 3 are spatially and temporally close, i.e. they appear in consecutive frames at similar positions. So a spatio-temporal pattern ¶1, 2, 3♢ is extracted. Similarity, ¶5, 6, 7♢ and ¶4♢ are also spatio-temporal patterns. However, ¶1, 5♢ is not a spatio-temporal pattern as the occurrence of 1 and 5 are quite far. The problem is then deĄned as extracting a complete set of spatio-temporal patterns with a frequency greater than a user threshold. For this purpose, the authors develop the algorithm DyPlagram based on a depth-Ąrst search strategy. Compared with other mining approaches aimed at Ąnding subclasses of graphs [START_REF] Yan | Şgspan: Graph-based substructure pattern mining[END_REF][START_REF] Inokuchi | ŞAn apriori-based algorithm for mining frequent substructures from graph data[END_REF][START_REF] Nijssen | ŞA quickstart in frequent structure mining can make a difference[END_REF], DyPlagram is more efficient in terms of time and memory for the following reasons. Firstly, Ąnding subgraphs in a dynamic graph is a NP-complete problem while subgraph isomorphism tests for plane graphs is polynomial [START_REF] Damiand | ŞA polynomial algorithm for submap isomorphism[END_REF]. Secondly, other algorithms extend a pattern by a single edge at a time, which generates huge amounts of extensions, while proposed patterns can only be extended with faces (a connected region of the plane which is bounded by a circuit of edges). In [START_REF] Diot | ŞGraph mining for object tracking in videos[END_REF], the authors extend their work by introducing additional spatiotemporal constraints and propose the algorithm DyPlagram_ST that takes in to account new constraints.

Periodic subgraphs

Many interesting patterns occurring regularly are often infrequent. To extract such regular behaviors, [START_REF] Lahiri | ŞMining periodic behavior in dynamic social networks[END_REF] consider the problem of mining periodic subgraphs in dynamic labeled graph. Mining periodic subgraph patterns is interesting in many domains. For instance, in a dynamic graph which represents movements and interactions of animals, a pattern could describe their periodic behaviors such as seasonal association.

Given a sequence of labeled graphs

G = ⟨G t 1 , G t 2 , ..., G tmax ⟩ over a set of time T = ¶t 1 , . . . , t max ♢. A periodic subgraph embedding (PSE) of a subgraph C = (V, E, λ)
in G is a maximal, ordered set of timesteps T where C is a subgraph of G t and the gap between every two consecutive elements t i and t i+1 in T is constant. Each periodic subgraph embedding (PSE) C = (V, E, λ) is associated with a triplet (b, p, s) where b is the Ąrst timestep, p is the period and s is the support of PSE. The aim is then to mine the complete set of closed periodic subgraphs whose support is greater than a user deĄned threshold. The authors propose a single pass, polynomial time and space algorithm called PSEMiner to Ąnd periodic patterns. However, this algorithm is not efficient because the pattern tree is browsed in a breadth-Ąrst manner at every timestep. Thus, many unessential tree nodes are generated.

To solve this problem, [START_REF] Apostolico | ŞSpeedup for a periodic subgraph miner[END_REF] propose a more efficient algorithm List-Miner, to mine periodic subgraph patterns. To avoid browsing the pattern tree, input graphs are partitioned by periodic value p of the form G p x = ¶G x , G x+p , ..., G x+np ♢, x = 1, 2, ..., p -1. They create p lists where each list node represents a unique periodic pattern. It allows to use previously computed intersections of graphs to compute following ones. This algorithm is more efficient in terms of execution time. However, it saves many redundant common interactions because new nodes are generated whenever interaction is changed within the graph over time. In summary, these two methods PSEMiner and ListMiner store separate graphs as long as one entity of a large graph is modiĄed over time.

In [START_REF] Halder | ŞSupergraph based periodic pattern mining in dynamic social networks[END_REF], the authors propose a super-graph (common vertices and edges of graphs) based periodic patterns mining algorithm, named SPPMiner, which improves the existing technics in both execution time and memory usage. Firstly, at each time interval t, an empty super-graph is initialized. Then it is updated with current graph entities (vertices and edges). Once entities stop to be periodic, they are removed from the super-graph. This super-graph becomes a periodic entity if it satisĄes the minimum support threshold. Compared with previous algorithms, the main advantage of this approach is that only one maximal common pattern calculation is needed for each time interval p. Moreover, all common and uncommon pattern entities (vertices and edges) in dynamic graphs are stored only once.

Coevolving patterns in dynamic graph

In (Ahmed and Karypis, 2015a), authors deĄne a new class of dynamic labeled graph patterns named coevolving relational motifs (CRMs). A relational motif is a subgraph that appears frequently in a single graph or several graphs. As shown in Fig. 2.9 (a), the frequent subgraph composed of the three shaded vertices, connected by labeled edges a, a and b, is a relational motif occurring four times (two times in G 1 and once in G 2 and G 3 respectively). Coevolving relational motifs (CRMs) are relational patterns that change in a consistent way (have at least one edge in common) through time. Fig. 2.9 (b) depicts an example of CRM. The Ąrst relational motif (M 1 ) composed of two shaded vertices and a labeled edge AE/IE/FG occurs four times in the Ąrst graph for 1990. Then three of these four motifs evolve in the same way by joining an additional vertex in the second relational motif M 2 in 2000. Finally, two of these three motifs evolve to M 3 composed of four shaded vertices and Ąve labeled edges AE, RM, PE, PM and ME/FG in 2005. The sequence < M 1 , M 2 , M 3 > is a CRM. The authors develop a depth-Ąrst search algorithm, named CRMminer, which allows to extract recurring sets of vertices whose relations (edges) change in a consistent way over time from a single dynamic labeled graph.

In [START_REF] Ahmed | ŞAlgorithms for mining the coevolving relational motifs in dynamic networks[END_REF], authors improved CRMminer by deĄning a new class of patterns, referred as coevolving induced relational motifs (CIRMs). More formally, a CIRM of length m is a tuple ¶N, < M 1 , ..., M m >♢, where N is a set of vertices and each M j = (V j , E j ) is an induced relational motif. A CIRM has to satisfy the following constraints: Given a dynamic network G containing T timesteps, a minimum support ϕ (1 ≤ ϕ), a minimum number of vertices k min per CIRM and a minimum number of motifs m min per CIRM, the problem is to enumerate all frequent coevolving induced relational motifs. To this aim, the authors develop the algorithm, CIRMiner, to extract all frequent coevolving induced relational motifs. CIRMiner is based on a depth-Ąrst search strategy. It is much more efficient than CRMminer because it generates only a small group (i.e., induced patterns) of all frequent CRMs. It results in a noticeable reduction in number of patterns and execution time.

Dynamic graphs as Boolean Tensors

Discovering closed patterns in ternary relations from a collection of graph sequences has received much attention. It provides insight into many real world applications. For instance, in a bicycle rental system, n-ary relation patterns permit to understand rider behaviors (rid-ersŠ popular and active stations, popular cycling routes over different periods etc.). Three approaches were proposed to mine this type of patterns, namely CubeMiner [START_REF] Ji | ŞMining frequent closed cubes in 3D datasets[END_REF], Trias [START_REF] Jaschke | ŞTRIASŰAn Algorithm for Mining Iceberg Tri-Lattices[END_REF], and Data-Peeler [START_REF] Cerf | ŞData-Peeler: Constraint-based closed pattern mining in n-ary relations[END_REF] (Cerf et al., 2009a). Data-Peeler follows a depth-Ąrst exploration approach. It is more general than the two former algorithms because only Data-Peeler can deal with n-ary relations and mine patterns that satisfy a large class of piecewise anti-monotonic constraints. In (Cerf et al., 2009b), the authors deĄne Data-Peeler algorithm to discover δ-contiguous closed 3-cliques patterns, i.e. maximal sets of vertices densely connected that run along some nearly contiguous timestamped graphs. Such a pattern respects three constraints. (1) it is a clique (every two distinct vertices in the clique are adjacent), (2) it is almost contiguous (the clique is respected on almost consecutive timestamps) and (3) it is closed (the pattern is maximal, any subset of the pattern violates the connection constraint). More formally, we set a t,v 1 ,v 2 = 1, if there exists an edge between vertex v 1 and vertex v 2 at time t.

A δ-contiguous closed 3-clique is a triset

P = (T, V 1 , V 2 ) where T is a set of timestamps,
V is a set of vertices such that (1) P is connected and symmetric, i.e.

∀(t, v 1 , v 2 ) ∈ P , a t,v 1 ,v 2 = 1 and a t,v 2 ,v 1 = 1; (2) P is δ-contiguous, i.e., ∀t ∈ T, ∃t ′ ∈ T s.t. ♣t -t ′ ♣ < δ; (3) P is closed, i.e., ̸ ∃t ∈ T and ̸ ∃v ∈ V ♣ (V 1 ∩ V 2 ) s.t. P ∪ t or P ∪ v is connected.

Rules to describe the graph evolution

In [START_REF] Holder | ŞLearning patterns in the dynamics of biological networks[END_REF], the authors study how a single graph structurally evolved over time. For this purpose, they specify graph rewriting rules that describe the evolution of two graphs. Fig. 2.10 (a) depicts graph rewriting rules between graph G i and G i+1 . It includes removals (R i ) and additions (A i ) of edges between two graphs G i and G i+1 . Then, a transformation rule which compresses rewriting rules and depicts structural changes (removals and additions) between graphs, is extracted. As shown in Fig. 2.10 (b), a transformation rule is simply deĄned as the common subgraph in removals and additions. [START_REF] Holder | ŞLearning patterns in the dynamics of biological networks[END_REF] propose an algorithm to discover rewriting rules whose main challenge is the extraction of maximum common subgraphs between two graphs, which is a NP-complete task. However, as they use labeled graphs in this method, discovering maximum common subgraph becomes a quadratic problem.

Figure 2.10 Ű (a) Graph rewriting rules between graph G i and G i+1 (b) A transformation rule that compresses the graph rewriting rules (e.g., a subgraph is removed from G i and then added in G i+1 ). Notations: R i , removals of edges between two graphs G i and G i+1 , A i , additions of edges between two graphs G i and G i+1 [START_REF] Holder | ŞLearning patterns in the dynamics of biological networks[END_REF] In [START_REF] Berlingerio | ŞMining graph evolution rules[END_REF], the authors introduce another problem that consists in extracting graph evolution rules satisfying both a minimum support and a minimum conĄ-dence constraint. A graph evolution rule is composed of a rule body → head where body is a connected graph and head is a super-pattern of body. They develop an algorithm called GERM (Graph Evolution Rule Miner) based on a depth-Ąrst search strategy to mine all graph evolution rules satisfying user deĄned support and conĄdence thresholds. They use the minimum image based support measure proposed in [START_REF] Bringmann | ŞWhat is frequent in a single graph?[END_REF]. It depends on the number of unique nodes in the graph G = (V G , E G , λ G ) which a node of the pattern P = (V P , E P , λ P ) is mapped to. Fig. 2.11 depicts an example of minimum image based support. The support of the pattern is 2 although this pattern has three occurrences. That is because the two white vertices could only be mapped to the same vertices 1 and 8. The main advantage of this deĄnition is to avoid a maximal independent set problem for each candidate pattern. A conĄdence measure is deĄned as the ratio of number of occurrences of head and body. It permits to calculate the likeness between steps of a graph evolution rule (head and body). 

Pattern mining in dynamic attributed graph

Methods presented in the previous section aim to study a single dynamic labeled graph or a collection of dynamic labeled graphs. However, such graph representations are limited, because each vertex is described by a single label, i.e. a single information. However, in many applications, objects/vertices are characterised by several attributes. For example, in a co-authorship network, where vertices represent authors and edges depict the co-authorship between authors, vertices could be labeled by a set of attributes which represent the number of publications in different conferences or journals (instead of only one attribute: authorŠs name). With additional information, we could analyze their research domain and their preferences. An aquaculture dataset (time series of satellite images) is another example. As already stated, with the development of remote sensing technology, we could obtain numerous vertex attributes, such as present/abscence of vegetation, presence/absence of water, presence/absence of aerator, etc. Thus, a dynamic attributed graph is proposed to model more complicated real-world phenomena where vertices are labeled by a set of attributes and both vertex attributes and edges could evolve over time. However, few methods have been proposed to mine such graphs. This task is complex because we have to consider both complexity of graph structure (e.g. connectivity, graph isomorphism etc.) and itemset complexity, which lead to a combinatorial explosion. 

t ∈ T , G t = (V t , E t , λ t ) is an attributed undirected graph where V t ⊆ V is the set of vertices at time t, E t ⊆ V t × V t is the set of edges at time t and λ t : V t → 2 AD is a function that associates each vertex of V t with a set of values AD = a∈A (a × D a ).

Triggering pattern mining

In [START_REF] Kaytoue | ŞTriggering Patterns of Topology Changes in Dynamic Graphs[END_REF], the authors deĄne the triggering pattern problem which allows to Ąnd temporal relationships between vertex attributes and their topological properties (degree, betweeness, number of cliques etc.). Given a dynamic attributed graph, let D be a set of descriptors (either vertex attributes or their topological properties), S = ¶+, -, ∅♢, a set of symbols to denote increase, decrease and remain constant. A triggering pattern is deĄned as a sequence P = < L, R > where L Figure 2.13 Ű A triggering pattern < ¶a + , b + ♢, ¶c -♢ → ¶deg + ♢ > whose support equals 2 (orange line and blue line), [START_REF] Kaytoue | ŞTriggering Patterns of Topology Changes in Dynamic Graphs[END_REF] is a sequence of descriptor variations sets (L =< X 1 , ..., X k > with X j ⊆ (D × S)), and R is a single topological variation, R ∈ (M × S), where M is a set of topological attributes such as degree, closeness and betweenness etc. The authors deĄne two interesting measures: the growth rate and the coverage.

Let P =< L, R >, ∆ a set of all sequences representing evolution of each vertex and ∆ R ⊆ ∆ is the set of vertex descriptive sequences that contain R. The growth rate of P is given by:

GR(P, △ R )= ♣SU P P (L,△ R )♣ ♣△ R ♣ × ♣△\△ R ♣ SU P P (L,△ R )
Coverage of a triggering pattern is deĄned as the set of vertices which support a pattern, i.e. ♣COV (P, △)♣. The problem is then to extract frequent triggering patterns, i.e., patterns that satisfy a minimum growth rate threshold minGR and a minimum coverage threshold minCov. Approaches for extracting triggering patterns have several possible applications. For example, Fig. 2.13 shows a social network whose vertices are users. Vertex attributes a, b and c describe number of updated blogs, positive opinions to other users and negative comments received from others respectively. For example, the sequence < ¶a + , b + ♢, ¶c -♢ → ¶deg + ♢ > is supported by two vertices u 1 and u 3 , it illustrates the fact that a blogger who updates blogs more often, gives more positive opinions to others and receives less negative comments, becomes often more popular.

The authors design an efficient algorithm TRIGAT to mine triggering patterns. First, TRIGAT generates all 1-item sequences satisfying coverage constraint. Then, it extends patterns using a pattern-growth strategy. The preĄx sequences s can be extended by adding a single descriptor variation at the end of the sequence.

Extracted patterns allow to show the impacts of attributes variations on topological properties. However, this approach is limited, as it cannot consider the global graph structure (connectivity, diameter etc.) and every vertex is independently modeled as a sequence of itemsets composed of vertex attributes and topological properties (degree, betweeness, number of cliques etc.).

Cohesive co-evolution pattern mining

In [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF], the authors deĄne cohesive co-evolution patterns. Such patterns represent a set of vertices with the same attributes and a similar neighborhood over a set of timestamps (vertices and attributes were Ąxed). The input database is a single dynamic attributed graph G = ⟨G t 1 , G t 2 , ..., G tmax ⟩ which represents the evolution of a graph over a set of time T = ¶t 1 , . . . , t max ♢. The set of vertices of G is denoted V. Each vertex is labeled by a set of attributes A (numerical or categorical). Each attribute a ∈ A is associated with a domain value D a = ¶+, -, =♢ which describes the evolution (increasing, decreasing and constant) of attribute values. For each time t ∈ T , G t = (V, E t , λ t ) is an attributed undirected graph where V ⊆ V is the set of vertices, E t ⊆ V t × V t is the set of edges at time t and and λ t : V t → 2 AD is a function that associates each vertex of V t with a set of values AD = a∈A (a × D a ).

Given a dynamic attributed graph, a cohesive co-evolution pattern is a triplet (N, T, P ) where N ⊆ V , T ⊆ T is a set of not necessarily consecutive timestamps and P is a set of signed attributes, i.e. P ⊆ A × S. This triplet must satisfy the following conditions: (1) each signed attribute a s ∈ P represents an attribute trend that has to be satisĄed by every vertex v ∈ V and at every timestep t ∈ T , (2) (N, T, P ) is maximal: adding any vertex, any timestamp or any signed attribute leads to the violation of (1), (3) at each time t ∈ T , the vertices of the pattern have to be cohesive through the graph. Given a similarity threshold σ ∈ [0, 1] and a similarity measure sim, a co-evolution pattern (N, T, P ) is cohesive iff: cohesive(N, T, P

) ≡ ∀t ∈ T, ∀u, v ∈ N 2 , sim(u, v, G t ) ≥ σ
Cohesiveness is important because it permits to consider the graph structure. For example, with a co-authorship network, this constraint allows to focus on the authors having co-author relationship. This constraint permits to assess vertex similarities by pairs, i.e. likeness of their neighbourhood. Any similarity measure can be considered. The authors choose Cosine [START_REF] Tan | Introduction to data mining[END_REF] and Jaccard [START_REF] Jaccard | ŞThe distribution of the Ćora in the alpine zone[END_REF] Let G be a single dynamic attributed graph. Given a similarity measure sim, a min-imum vertex similarity threshold σ and a minimum volume threshold θ, mining cohesive co-evolution patterns consists in Ąnding the complete set of co-evolution patterns that have a volume no less than θ and that satisfy the cohesiveness constraint. The authors develop a novel algorithm to extract co-evolution patterns. They decompose the original search space into smaller pieces such that each portion can be independently computed in main memory.

All valid triplets (N, T, P ) are enumerated in a depth-Ąrst search manner. Finally, they union the three sets N , T and P extracted from each portion to generate the Ąnal co-evolution pattern.

The authors extended their work in [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF] by integrating constraints on graph topology and on attribute values to extract maximal dynamic attributed subgraphs. Given a dynamic attributed graph G = ⟨G t 1 , G t 2 , ..., G tmax ⟩, and a set of measures, the problem is to enumerate all trend sub-graphs (U, S, Ω) in a dynamic attributed graph (V, T, λ) where U is a subset of V, S is a subsequence of T and Ω is a subset of signed attributes λ. They deĄne two more interesting measures compared to the former one [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF]: vertex speciĄcity and trend relevancy. The Ąrst one allows to show the similarity between vertices outside the trend sub-graph and the ones inside this sub-graph. The second one allows to understand if attributes not belonging to Ω follow homogeneous trends on subgraph. The authors develop an algorithm based on a depth-Ąrst exploration strategy to Ąnd trend subgraph patterns.

These approaches are nevertheless limited because of the following reasons. Firstly, all vertex attributes have to follow the same trend over time. They do not consider patterns whose vertices and signed attributes follow different trend over time. Let us consider an airline network. If we want to study the impact of hurricanes on cancelled Ćight, an extracted co-evolution pattern could depict an increasing trend of cancelled Ćights when hurricane come. However, it is impossible to know how cancelled Ćights evolve in the following time when hurricane becomes weaker or disappears. Secondly, vertices are Ąxed, whereas, in many applications, vertices also evolve over time. For example, in an aquaculture dataset, a vertex (aquaculture pond) could be divided into several vertices and several vertices could be merged into one vertex over time. ). Analyzing a dynamic attributed graph is interesting because of two main reasons. Firstly, this data structure permits to model more interesting and complex real world phenomena as vertices are labeled by a set of attributes instead of a single attribute. Secondly, not only the graph structure (edges) but also vertices and their attributes could evolve over time. Here, we extend the deĄnition of a dynamic attributed graph which was initially proposed in [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF] where all vertices are Ąxed. Because in many real world datasets, vertices may evolve over time (e.g. appear or disapper). For example, a vertex (e.g. an aquaculture pond) could be divided into several vertices, and several vertices could be merged into one vertex over time. To the best of our knowledge, few methods have been proposed to mine a dynamic attributed graph because it is a difficult task due to the complexity of such graph structure and the important number of attribute combinations.

In [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF], the authors mined cohesive co-evolutions in a dynamic attributed graph. These patterns represent a set of vertices with same values for a subset of attributes and a similar neighborhood over a set of timestamps (vertices and attributes were Ąxed).

In our work, we deĄne a more general pattern domain, called recurrent pattern, which describe recurrent evolutions in a dynamic attributed graph. It enables to capture not only vertices having same attribute values for periods of time such as in [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF][START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF], but also to capture evolutions of attribute values and vertices over time. The patterns consist in connected subgraph sequences satisfying topological, frequency and non-redundancy constraints in the input data.

This chapter is organized as follows. In section 3.1, we introduce a dynamic attributed graph. Then we deĄne our pattern domain and several constraints which allow users to Ąlter interesting patterns. In section 3.2, we develop an original algorithm, called RPminer, based on graph intersections and a progressive extension of patterns over time. Section 3.3 reports experiments performed on artiĄcial and real-world data that demonstrate the efficiency of the algorithm, its generality and interest of extracted patterns.

Dynamic attributed graph

The input database is a single dynamic attributed graph G = ⟨G t 1 , G t 2 , ..., G tmax ⟩ which represents the evolution of a graph over a set of time T = ¶t 1 , . . . , t max ♢. The set of vertices of G is denoted V. Each vertex is labeled by a set of attributes A (numerical or categorical). Each attribute a ∈ A is associated with a domain value D a . For each time t ∈ T , G t = (V t , E t , λ t ) is an attributed undirected graph where: (1) V t ⊆ V is the set of vertices at time t, (2) E t ⊆ V t × V t is the set of edges at time t and (iii) λ t : V t → 2 AD is a function that associates each vertex of V t with a set of values AD = a∈A (a × D a ). Fig. 3.1 presents an example of dynamic attributed graph with

V = ¶v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7 , v 8 , v 9 , v 10 , v 11 , v 12 ♢, T = ¶T 1 , T 2 , T 3 , T 4 , T 5 ♢ and A = ¶a 1 , a 2 ♢.
The value of the attribute a at time t for vertex v is denoted as G t (v, a). For instance, G 1 (v 5 , a 1 ) = 5. In this manuscript, in addition to numeric and categorical vertex values, we also study the trends of attributes (increasing, decreasing and constant), i.e., evolutions of the vertex attribute values between two consecutive timestamps T i and T i+1 . Fig. 3.2 depicts the dynamic attributed graph after pre-processing. Edges for each time t i are the edges of the timestamp T i+1 , and the trend is the evolution of attribute values between T i and T i+1 . There is ♣T ♣ -1 time steps. In the following, we consider D a = ¶+, -, =♢ in order to simplify the given examples. 

A new pattern domain and its constraints

Recurrent evolutions of vertices

Let (V, λ) be a subset of attributed vertices of G with V ⊆ V and λ : V → 2 AD . (V, λ) can be considered as an attributed graph without edges. The deĄnition of attributed subgraph presented in the previous section can be easily restrained to a set of attributed vertices. We then have (

V ′ , λ ′ ) ⊑ (V, λ), iff V ′ ⊆ V and ∀v ′ ∈ V ′ : λ ′ (v ′ ) ⊆ λ(v ′ ). To facilitate the reading of examples, (V, λ) can also be denoted (v 1 : λ(v 1 ) ♣ v 2 : λ(v 2 ) ♣ ...), ∀v 1 , v 2 ... ∈ V . As shown in Fig. 3.2, (1 : a 1 + a 2 -♣ 2 : a 1 + a 2 -♣ 3 : a 1 -a 2 -♣ 4 : a 1 -a 2 + ♣ 5 : a 1 -a 2 -) is a set of attributed vertices at time t 1 . An evolution of a subset of vertices of G starting at time t ∈ T is a sequence S = ⟨(V ′ 1 , λ ′ 1 ) (V ′ 2 , λ ′ 2 ) . . . (V ′ k , λ ′ k )⟩, such as ∀i ∈ ¶1, 2, ..., k♢, ∃E ′ i ⊆ E t+i-1 , (V ′ i , E ′ i , λ ′ i ) ⊑ G t+i-1 . For ex- ample, in Fig. 3.2, ⟨(1 : a 1 + a 2 -♣ 2 : a 1 + a 2 -♣ 3 : a 1 -a 2 -♣ 4 : a 1 -a 2 + ♣ 5 : a 1 -a 2 -) ⟨(1 : a 1 + a 2 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -a 2 +)⟩ is an evolution starting at time t 1 . ⟨(1 : a 1 + a 2 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -a 2 +) (1 : a 1 + a 2 -♣ 2 : a 1 -a 2 -♣ 3 : a 1 -a 2 +) (1 : a 1 + a 2 -♣ 3 : a 1 + a 2 -♣ 5 : a 1 -a 2 +)⟩ is an evolution starting at time t 2 .
Let T P = ¶t i 1 , ..., t im ♢ be a set of times associated with the evolution

S P = ⟨(V ′ 1 , λ ′ 1 ) (V ′ 2 , λ ′ 2 ) . . . (V ′ k , λ ′ k )⟩.
A recurrent evolution of a subset of vertices of G starting at times T P 1. Mining recurrent patterns in a dynamic attributed graph according to the sequence S P , is denoted P = (S P , T P ). In this case, the size of P is k. In Fig. 3.2, ⟨(1 :

a 1 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -)(1 : a 1 + ♣ 2 : a 2 -)⟩, ¶t 1 , t 2
♢ is an example of recurrent pattern starting at times t 1 and t 2 . This pattern represents a connected subgraph composed of v 1 , v 2 and v 5 followed by a connected subgraph composed of v 1 and v 2 . This pattern appears two times in the database, so its frequency is 2.

A relation of specialization/generalization can be deĄned on this pattern domain. Let P 1 =

⟨(V ′ 1 , λ ′ 1 ) (V ′ 2 , λ ′ 2 ) . . . (V ′ k , λ ′ k )⟩, T P 1 and P 2 = ⟨(V ′′ 1 , λ ′′ 1 ) (V ′′ 2 , λ ′′ 2 ) . . . (V ′′ l , λ ′′ l )⟩
, T P 2 be two patterns representing two recurrent evolutions of G. P 1 is a recurrent evolution more general (resp. more speciĄc) than P 2, denoted P 1 ⪯ P 2 (resp. P 1 ⪰ P 2), if there exists j ∈ ¶0, ..., l -k♢, such as ∀i ∈ ¶1, ..., k♢,

(V ′ i , λ ′ i ) ⊑ (V ′′ i+j , λ ′′ i+j ). In Fig. 3.2, (⟨1 : a 1 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -)(1 : a 1 + ♣ 2 : a 2 -)⟩, ¶t 1 , t 2 ♢) is a recurrent pattern more speciĄc than ⟨(1 : a 1 + ♣ 2 : a 1 + a 2 -)(1 : a 1 +)⟩, ¶t 1 , t 2 ♢ .

Interesting measures and constraints

In this subsection, we deĄne several measures and constraints to Ąlter interesting patterns.

Firstly, we consider the graph structure. We propose three constraints taking into account the graph structure, i.e. connectivity of vertices, cohesiveness and volume of extracted patterns. In addition, we consider two temporal constraints: temporal continuity and gap. Finally, we consider the "classical" constraints such as frequency and non-redundancy.

Connectivity. In a graph, vertices often represent individuals/objects, and edges represent relationships between these individuals/objects. Integration of a connectivity constraint between vertices during pattern mining enables to focus on related objects. Let us consider for instance, in a dataset dealing with aquaculture dataset. A set of vertex-labels {Active/InActive, WithVegetation/WithoutVegetation} is assigned to each pond. It is interesting to understand how a set of adjacent ponds evolve over time, because adjacent ponds may interact with each other (for example, virus could spread from one to its neighbor, activities of adjacent ponds could be inĆuenced by the same forest, mangrove, river or residential area etc.).

P = ⟨(V ′ 1 , λ ′ 1 ) (V ′ 2 , λ ′ 2 ) . . . (V ′ k , λ ′ k )⟩, T P is an evolution of connected vertices in G if ∀t ∈ T P , ∀i ∈ ¶1, 2, ..., k♢, ∃E ′ i ⊆ E t+i-1 , (V ′ i , E ′ i , λ ′ i ) ⊑ conn G t+i-1 . In Fig. 3.2, ⟨(1 : a 1 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -)(1 : a 1 + ♣ 2 : a 2 -)⟩, ¶t 1 , t 2 ♢ is an evolution of connected vertices.
Cohesiveness. This constraint [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF] esures that the neighborhood of pairs of pattern vertices is cohesive. It calculates the similarity of the neighborhood or the neighborhood structure to extract a set of vertices which are closely related. For instance, in a DBLP dataset, this constraint permits to depict close working relationships between authors. Given a minimum similarity threshold minsim ∈ [0, 1] and a similarity measure, a pattern

P = ⟨(V ′ 1 , λ ′ 1 ) (V ′ 2 , λ ′ 2 ) . . . (V ′ k , λ ′ k )⟩, T P is cohesive if ∀v ∈ V ′ i , with 1 ≤ i ≤ k, ∃u ∈ V ′ i , such as sim(v, u, V ′ i ) ≥ minsim
Here, any similarity measure can be used to discover patterns with different graph structures. We propose to use Cosine [START_REF] Tan | Introduction to data mining[END_REF] and Jaccard [START_REF] Jaccard | ŞThe distribution of the Ćora in the alpine zone[END_REF] similarities which consider only the similarity of direct vertex neighborhood. Let N (u) be the adjacent neighborhood of u.

Cosine(u, v) =  ♣(N (u))∩(N (v))♣ √ ♣N (u)♣×♣N (v)♣  Jaccard(u, v) =  ♣(N (u))∩(N (v))♣ ♣N (u)♣∪♣N (v)♣  Volume.
Volume is another measure commonly applied in the context of graph mining. It is deĄned as the number of vertices of a graph. It can represent, for instance, the size of a community in a social network. Let vol(P ) = min ∀i∈ ¶1...k♢ (♣V ′ i ♣) be the volume of pattern

P = ⟨(V ′ 1 , λ ′ 1 ) . . . (V ′ k , λ ′ k )⟩, T P .
P is a sufficiently voluminous pattern iff vol(P ) ≥ minvol, where minvol is a user-deĄned threshold. For example, pattern

⟨(1 : a 1 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -)(1 : a 1 + ♣ 2 : a 2 -)⟩, ¶t 1 , t 2 ♢ has a volume of 2.
Temporal continuity. By default, an evolution may include entirely different vertices at each step. In other words, if

P = ⟨(V ′ 1 , λ ′ 1 ) (V ′ 2 , λ ′ 2 ) . . . (V ′ k , λ ′ k )⟩, T P , then it is possible to have ∀i∈1...k V ′ i = ∅.
Interpreting such evolutions can be difficult for end users because there is actually no direct relation between individuals/objects (represented by vertices) at different timestamps. We propose a new constraint to target patterns which describe evolutions around a common core of individuals. Such a constraint allows to follow evolutions of a number of vertices over time while taking into account neighboring vertices (directly or indirectly). Let

P = ⟨(V ′ 1 , λ ′ 1 ) (V ′ 2 , λ ′ 2 ) . . . (V ′ k , λ ′ k )⟩, T P be a pattern. Let com(P ) = ♣ ∀i∈1...k V ′
i ♣ be the number of vertices occurring at all times in T P . P is a continuous pattern over time iff com(P ) ≥ mincom, where mincom is a user-deĄned threshold. For instrance, pattern ⟨(1 : a 1 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -)(1 : a 1 + ♣ 2 : a 2 -)⟩, ¶t 1 , t 2 ♢ has two common vertices at t 1 and t 2 , i.e. com(P ) = 2 while com(P ) = 0 for the pattern

⟨(1 : a 1 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -)(6 : a 1 -a 2 -♣ 11 : a 1 -a 2 + ♣ 12 : a 1 -a 2 -)⟩, ¶t 1 , t 2 ♢ .
Gap. Gap is a measure commonly applied in the context of sequence mining [START_REF] Fournier-Viger | ŞA knowledge discovery framework for learning task models from user interactions in intelligent tutoring systems[END_REF]. It is deĄned as the time interval allowed between every two successive subgraphs of a recurrent pattern. It permits to study short term as well as long term evolutions. For example, if we study a DBLP co-authorship dataset, with gap=5 years, we could extract patterns describing general evolutions of authors, i.e., author A and author B Ąrstly work with C and D, then in the following 5 years with F and G. While if we set gap to 2 years, we will get more speciĄc evolutions over a smaller period of time: in the Ąrst 2 years A and B worked with authors C, D and E. Then, in the following 2 years, they worked with C, D, F and G. Next, they worked with C, F and G, and then with F, G and H, Finally they worked with F, G, H and I. Let gap(P)=extractgap, gap is a user-deĄned threshold. For example, given gap=2, ⟨(6 : a 2 -♣ 11 : a 1 -♣ 12 : a 1 -)(6 : a 1a 2 -♣ 9 : a 1 + a 2 -)⟩, ¶t 1 , t 2 ♢ (extracted from Fig. 3.2) depicts a long term evolution in which time interval of every two consecutive graphs equals to 2.

Frequency. Minimum frequency is one of the most widely used constraints. It aims to Ąlter patterns which occur more than a minimum number of times. It is commonly applied when a database is a collection of transactions. However, deĄning a frequency constraint is generally more challenging in a single graph context [START_REF] Fiedler | ŞSubgraph support in a single large graph[END_REF][START_REF] Nijssen | ŞWhat is Frequent in a Single Graph?[END_REF], mainly because of the presence of embedded overlappings. Nevertheless, frequency is easy to calculate in our case because of the nature of the extracted patterns. Indeed, the frequency of a pattern is simply the number of times at which a given evolution begins. It represents the number of recurrences of this evolution. Let P = (S P , T P ) be a pattern. Frequency of P is sup(P ) = ♣T P ♣. Consequently, P is a frequent evolution iff sup(P ) ≥ minsup, where minsup is a user-deĄned threshold. For example, in Fig. 3.2, the frequency of ⟨(6 : a 2 -♣ 11 : a 1 -♣ 12 : a 1 -)(11 : a 1a 2 + ♣ 12 : a 1a 2 -)⟩, ¶t 1 , t 2 , t 3 ♢ is 3 since it begins at t 1 , t 2 and t 3 .

Non-redundancy.

A huge number of patterns can be extracted. However, some of these patterns may contain redundant information. For example, if two patterns P 1 = (S P 1 , T P 1 ) and P 2 = (S P 2 , T P 2 ) are such that P 1 ⪯ P 2 and T P 1 = T P 2 , then it is not necessary to keep P 1. Indeed, the sequence of attributed vertices of P 1 is present in P 2 and the two patterns occur exactly at the same times. The non-redundancy constraint is close to the notion of closure that has been applied to a large number of pattern domains (e.g. itemsets, sequences, trees) [START_REF] Yan | ŞCloSpan: Mining: Closed sequential patterns in large datasets[END_REF][START_REF] Huang | ŞCOBRA: closed sequential pattern mining using bi-phase reduction approach[END_REF][START_REF] Gomariz | ŞClaSP: an efficient algorithm for mining frequent closed sequences[END_REF][START_REF] Wang | ŞFrequent closed sequence mining without candidate maintenance[END_REF]. More formally, let Sol be a set of non-redundant pattern solutions. Let P 1 = (S P 1 , T P 1 ) and P 2 = (S P 2 , T P 2 ) be two recurrent patterns. If P 1 ∈ Sol then ∄P 2 ∈ Sol such as P 1 ≺ P 2 and T P 1 = T P 2 . In Fig. 3.2, ⟨(1 :

a 1 + ♣ 2 : a 1 + a 2 -)(1 : a 1 + ♣ 2 : a 2 -)⟩, ¶t 1 , t 2 ♢ is a redun- dant evolution with respect to ⟨(1 : a 1 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -)(1 : a 1 + ♣ 2 : a 2 -)⟩, ¶t 1 , t 2 ♢ .

Problem setting

Given a dynamic attributed graph G, the problem is to enumerate the complete set of recurrent evolutions in G, denoted Sol, such that ∀P ∈ Sol: 1) vertices of P are connected or cohesive at each time (i.e. cosine(P ) ≥ mincos); 2) P is sufficiently voluminous (i.e. vol(P ) ≥ minvol); 3) P is frequent (i.e. sup(P ) ≥ minsup); 4) P is not redundant in Sol; 5) P is centered around a core of vertices sufficiently large (i.e. com(P ) ≥ mincom); and 6) the interval between every two successive subgraphs equals to gap, where mincos, minsup, minvol, mincom and gap are user-deĄned thresholds. Intuitively, recurrent patterns are sequences of connected subgraphs which represent recurring evolutions of related subsets of nodes w.r.t. their attributes.

Algorithm

In this section, we introduce an enumeration strategy to extract recurrent patterns satisfying constraints stated above. Unlike a number of pattern mining algorithms, our approach is not based on a generate-test strategy (where candidate patterns are generated, tested and then combined). It performs neither a breadth-Ąrst nor a depth-Ąrst search. It is not based on a projection strategy either (such as PrefixSpan). Instead, our method is an iterative approach based on successive intersections and extensions of connected components occurring over time. As shown in Fig. 3.3, in each iteration, size-1 fragments are generated by processing time combinations T k i containing t i , where minsup ≤ k ≤ ♣T ♣ and then they are progressively combined to generate solutions. We thus get a set of solutions of different sizes at each iteration (at each time). The main advantage of this approach is to avoid generating a large number of patterns which do not satisfy the constraints. In the following subsection, we introduce the notion of intersection between attributed graphs and explain its interest w.r.t. our pattern mining problem.

Intersection of attributed graphs

Intersections of graphs permit to bring out two properties.

Intersection and frequency. Let us consider two times i, j ∈ T . The intersection of two attributed graphs

G i = (V i , E i , λ i ) and G j = (V j , E j , λ j ), ∀G i , G j ∈ G denoted by G i ⊓ G j , is an attributed graph G = (V, E, λ) such as V = V i ∩ V j , E = E i ∩ E j , ∀v ∈ V , λ(v) = λ i (v) ∩ λ j (v).
The result is a subgraph composed of vertices, edges and attribute values common to the two initial graphs. We can notice that every subgraph of G occurs at least two times in G. In Fig. 3.4, let us consider only a part of G for clarity of presentation. The subgraph c ⊏ G 1 ⊓ G 3 occurs at least 2 times (at t 1 and t 3 ). This deĄnition can be generalized to the intersection of k graphs, with k ∈ ¶2, 3, ...♣T ♣♢. Let

T k ⊆ T be a subset of times of G such that ♣T k ♣ = k. The graphs intersection in G at the k times in T k , denoted by ⊓ i∈T k G i , is a graph G = (V, E, λ), with V = ∩ i∈T k V i , E = ∩ i∈T k E i , ∀v ∈ V , λ(v) = ∩ i∈T k λ i (v). The minimum frequency in G of all subgraphs of ⊓ i∈T k G i is k.
Consequently, all patterns constructed from intersection of minsup graphs of G will satisfy the minimum frequency constraint.

Intersection and non-redundancy. Intersections also have other properties. Let us study in particular connected components (i.e. maximal connected subgraphs) resulting from intersection of several graphs. We denote C i⊓j the set of connected components obtained after intersection of graphs in G at times i and j, i.e. G i ⊓ G j . More formally, 

C i⊓j = ¶(V, E, λ) ♣ (V, E, λ) ⊑ conn G i ⊓ G j and ∄(V ′ , E ′ , λ ′ ), (V, E, λ) ⊏ (V ′ , E ′ , λ ′ ) s.t. (V ′ , E ′ , λ ′ ) ⊑ conn G i ⊓
′ ⊑ G i ⊓ G j , which is impossible since c is a connected component of G i ⊓ G j (thus it is maximal). In Fig. 3.4, the connected component c 1 = (6 : a 2 -♣ 11 : a 1 -♣ 12 : a 1 -) is in G 1 , G 2 and G 3 . Consequently, it appears in G 1 ⊓ G 2 and G 1 ⊓ G 3 .
In addition, there is no superset of vertices occurring at the same times. On the other hand, the subset c 2 = (11 : a 1 -♣ 12 : a 1 -) can be obtained by performing G 1 ⊓ G 4 , but it is not redundant to c 1 because it occurs at four times (t 1 , Figure 3.4 Ű Example of graph intersection t 2 , t 3 and t 4 ). To conclude, if c = (V, E, λ), then the pattern ⟨(V, λ)⟩, T c satisĄes the connectivity constraint (since it is a connected component), as well as the non-redundancy constraint (w.r.t. size-1 patterns). In other words, this pattern will be either a solution or a fragment of solution. This property can be generalized to any set T, T ′ ⊆ T . We note C ⊓T (resp. C ⊓T ′ ), the set of connected components obtained after intersection of graphs at times T (resp.

T ′ ), i.e ⊓ i∈T G i . If c ∈ C ⊓T , then ∄c ′ ∈ C ⊓T ′ such as c ⊏ c ′ and T c = T c ′ .
Size-1 patterns associated with those connected components satisfy both connectivity and non-redundancy constraints. The inverse of this proposition is also true. All size-1 solutions and all size-1 pattern fragments can be derived from connected components obtained after intersecting graphs in G. In other words, these intersections provide the Šbuilding blocksŠ to construct solutions. The interest of these intersections is to avoid performing a large number of inclusion tests during pattern enumeration (to verify the frequency and non-redundancy constraints). The number of intersections is 2 ♣T ♣ . Thus, it depends only on the number of times in G, whereas the number of inclusion tests depends on the number of patterns generated, which is much higher.

Generation of a size-1 pattern

As shown in the previous section, size-1 patterns resulting from graph intersections directly satisfy frequency, connectivity and non-redundancy constraints. To extract Ąnal solutions, it is sufficient to verify volume and temporal continuity constraints. These constraints are simple and not costly to calculate as they are based on the studied pattern structure. Size-1 solutions or size-1 fragments can be deĄned as follows:

P = ¶ ⟨(V, λ)⟩, T ♣ T ⊆ T , ♣T ♣ ≥ minsup, ♣V ♣ ≥ minvol, and ∃c = (V, E, λ) such as c ∈ C ⊓T .
A graph preprocessing is performed before intersections to reduce connectivity tests. It consists in Ąnding all connected components of G i (1 ≤ i ≤ ♣T ♣) whose volumes are greater than minvol, denoted as C i . As shown in Fig. 3.5, we Ąrstly extract the set of connected components for G 1 , i.e.,

C 1 = ¶(v 1 , v 2 , v 3 , v 4 , v 5 ), (v 6 , v 7 , v 8 , v 9 , v 10 , v 11 , v 12 )♢. In the same way, C 2 = ¶(v 1 , v 2 , v 5 ),(v 3 , v 4 ), (v 6 , v 11 , v 12 ), (v 8 , v 9 , v 10 )♢, C 3 = ¶(v 1 , v 2 , v 3 ),(v 4 , v 5 ), (v 6 , v 7 , v 8 , v 9 , v 10 , v 11 , v 12 )♢ and C 4 = ¶(v 1 , v 3 , v 5 ), (v 6 , v 7 , v 8 , v 9 , v 10 , v 11 , v 12 )♢ are extracted.
Intersections of connected components are then performed not on initial graphs but on their connected components. Let us now present a two-step approach (algorithm 1) to intersect graphs G i and G j where i, j ∈ T . Firstly, intersection is performed by simply Ąnding the common sets of vertices CandV and the common set of edges CandE between C i and C j (Lines 1-6, algorithm 1). The function CommonVerticesEdges (algorithm 2) aims to extract sets of vertices CandV with a sufficient volume, which avoids lots of connectivity tests and Ąnd the set of common edges CandE, which permits to verify the connectives of vertices in the following step (algorithm 3). The second step (Lines 7-19, algorithm 1) aims to calculate common attributes and verify vertex connectivity to determine Ąnal size-1 patterns. We browse each set V of CandV . For a vertex v l ∈ V , if trends (or values) of at least one attribute a l of v l are the same at both t i and t j , the vertex and its attribute trend (value) will be added to the Ąnal set of connected components (size-1 patterns) sol ′ ∈ P with sol ′ = (V ′ , λ ′ ). Otherwise, this vertex will be kept in a new set of connected component sol * ∈ P . Then, in function CommonAttributes (algorithm 3), we conduct the same operations for its neighbors N (v l ) such as N (v l ) ∈ V and iteratively on neighbors of its neighbors N (N (v l )) such as N (N (v l )) ∈ V . This depth-Ąrst process (algorithm 3) continues until it has browsed all vertices in V and extracts the Ąnal size-1 patterns (complete sets of attributed connected components).

Algorithm 1: ExtractIntersect: mining size-1 patterns Require: C = ¶C i set of connected components of G i ♢, T : a set of times Ensure: Set of size-1 patterns satisfying the constraints: Cand

1: CandV = ∅ 2: CandE = ∅ 3: let t ′ ∈ T 4: for each c ′ ∈ C t ′ , with c ′ = (V ′ , E ′ , λ ′ ) do 5: CommonV erticesEdges(V ′ , E ′ , T -t ′ , C, CandV, CandE) 6: end for 7: for each V ∈ CandV do 8: if V ̸ = ∅ then 9: for each v ∈ V do 10: sol = ∅ 11: Candλ(v) = ∩ t∈T λt(v)
12: 4), (v 6 , v 12 ), (v 8 , v 9 ), (v 9 , v 10 ), (v 11 , v 12 )♢. Then, for the candidate connected component (v 1 , v 2 , v 5 ), we calculate Ąrstly the common attributes of vertex v 1 between G 1 and G 2 . As we can see in Fig. 3.5, vertex v 1 shares the same evolution for a 1 + in graphs G 1 and G 2 , so it is added to the Ąnal set of size-1 pattern sol ′ . Its neighbors v 2 (v 2 ∈ V and (v1, v2) ∈ CandE) and v 5 (v 5 ∈ V and (v1, v5) ∈ CandE) are then checked by calculating common attribute trends. This constructs the size-1 pattern ⟨(1 : a 1 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -)⟩, ¶t 1 , t 2 ♢ . As shown in Fig. 3.6, this approach enables to Ąnd other size-1 patterns of G 1 and G 2 : ⟨(3 : a 2 -♣ 4 : a 1 -)⟩, ¶t 1 , t 2 ♢ , ⟨(6 : a 2 -♣ 11 : a 1 -♣ 12 : a 1 -)⟩, ¶t 1 , t 2 ♢ and ⟨(8 : a 1 + ♣ 9 : a 1 + a 2 -♣ 10 : a 2 +)⟩, ¶t 1 , t 2 ♢ . In this Ągure vertices of a subgraph are connected by a dotted line, because we do not consider how the vertices are connected, we only know that the subgraph is connected.

V = V - ¶v♢ 13: if Candλ(v) ̸ = ∅ then 14: CommonAttributes(v, V,
Require: V ′ , E ′ , T ′ , C, CandV , CandE Ensure: CandV : Common sets of vertices, CandE: Common set of edges 1: if T ′ = ∅ then 2: if ♣V ′ ♣ ≥ minvol then 3: CandV = CandV ∪ ¶V ′ ♢ 4: CandE = CandV ∪ ¶E ′ ♢ 5: end if 6: else 7: let t * ∈ T ′ 8: for each c * ∈ C t * , with c * = (V * , E * , λ * ) do 9: CommonverticesEdges(V ′ ∩ V * , E ′ ∩ E * , T ′ - ¶t * ♢, C,
Candλ(N (v)) = ∩ t∈T λt(N (v)) 6: if Candλ(N (v)) ̸ = ∅ then 7: V = V - ¶N (v)♢ 8: sol = sol ∪ ¶N (v), Candλ(N (v))♢ 9: CommonAttributes(N (v), V,
, i.e., CandV = ¶ ¶v 1 , v 2 , v 5 ♢, ¶v 3 , v 4 ♢, ¶v 6 , v 11 , v 12 ♢, ¶v 8 , v 9 , v 10 ♢♢, CandE = ¶(v 1 , v 2 ), (v 1 , v 5 ), (v 3 , v
We illustrate intersections with another example based on G 2 and G 3 . We Ąrst calculate the common sets of vertices CandV and the common set of edges CandE of C 2 and C 3 , i.e., CandV = ¶ ¶v 1 , v 2 ♢, ¶v 6 , v 11 , v 12 ♢, ¶v 8 , v 9 , v 10 ♢♢ and CandE = ¶(v 1 , v 2 ), (v 6 , v 12 ), (v 8 , v 9 ), (v 11 , v 12 )♢. We can see that by calculating CandV , the vertices v 3 , v 4 and v 5 are already deleted from the original sets which reduces connectivity tests. Then, for the candidate connected component V = (v 1 , v 2 ), we check the attribute trends of vertex v 1 . The vertex v 1 shares the same evolution a 1 + in graphs G 2 and G 3 . Its neighbor v 2 (v 2 ∈ V and (v1, v2) ∈ CandE) is then veriĄed by calculating common attribute trends and the size-1 pattern ⟨(1 : a 1 + ♣ 2 : a 2 -)⟩, ¶t 2 , t 3 ♢ is recursively constructed. In the same way, we get another size-1 pattern ⟨(6 : a 1a 2 -♣ 11 : a 1a 2 + ♣ 12 : a 1a 2 -)⟩, ¶t 2 , t 3 ♢ from (v 6 , v 11 , v 12 ). For V = (v 8 , v 9 , v 10 ), we can notice that although v 8 v 9 and v 10 are all in V , (v 9 , v 10 ) / ∈ CandE. So v 10 is rejected and we obtain the Ąnal size-1 pattern ⟨(8 : a 1 + ♣ 9 : a 1 + a 2 -)⟩, ¶t 2 , t 3 ♢ .

Extension of a size-1 pattern

Given a size-1 pattern, its possible extensions are generated by processing times (and corresponding graph intersections) incrementally. Next, size-1 patterns extracted by these intersections can be combined, according to the times when they occur, to built the solutions. 3.7 illustrates this incremental generation starting from times t 1 and t 2 . It displays parallel extensions of a pattern which occurs at t 1 and t 2 . As the frequency constraint is directly related to the number of "intersected" times, we can conclude that minimum frequency in this example is 2. Suppose that there exists a solution

P = ⟨(V ′ 1 , λ ′ 1 )(V ′ 2 , λ ′ 2 ) . . . (V ′ n , λ ′ n )⟩, ¶t 1 , t 2 ♢ .
Let C i and C j be the sets of connected components of G i and G j . Intersection between C 1 and C 2 results in a graph composed of several connected components, such as c = (V ′

1 , E ′ 1 , λ ′ 1 ), occurring at times t 1 and t 2 . Pattern P = ⟨(V ′ 1 , λ ′ 1 )⟩, ¶t 1 , t 2 ♢ can be generated based on that intersection. The Ąrst occurrence of this pattern is at time t 1 , and the second one at time t 2 . Candidate extensions for these occurrences can only be at t 2 and t 3 respectively (since gaps considered in this example is 1). Now let us consider times ¶t 2 , t 3 ♢. Let us suppose that c

′ = (V ′ 2 , E ′ 2 , λ ′ 2 ) is a connected component of C 2 ⊓ C 3 .
If c and c ′ share a sufficient number of vertices (temporal continuity constraint), then we can extend the pattern P to obtain ⟨(V ′ 1 , λ ′ 1 )(V ′ 2 , λ ′ 2 )⟩, ¶t 1 , t 2 ♢ . This process continues until no more extension can be performed. At each iteration, connected components can be used to extend patterns from the previous iteration, but they can also be "starting points" for new patterns. As a consequence, these successive extensions generate all solutions starting at time t 1 , then all solutions starting at time t 2 , etc. 

⟨(1 : a 1 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -)⟩, ¶t 1 , t 2 ♢ , ⟨(3 : a 2 -♣ 4 : a 1 -)⟩, ¶t 1 , t 2 ♢ , ⟨(6 : a 2 -♣ 11 : a 1 -♣ 12 : a 1 -)⟩, ¶t 1 , t 2 ♢ , ⟨(8 : a 1 + ♣ 9 : a 1 + a 2 -♣ 10 : a 2 +)⟩, ¶t 1 , t 2 ♢ .
We calculate Ąrstly all size-1 patterns of G 2 and G 3 :

⟨(1 : a 1 + ♣ 2 : a 2 -)⟩, ¶t 2 , t 3 ♢ , ⟨(6 : a 1 -a 2 -♣ 11 : a 1 -a 2 + ♣ 12 : a 1 -a 2 -)⟩, ¶t 2 , t 3 ♢ , ⟨(8 : a 1 + ♣ 9 : a 1 + a 2 -)⟩, ¶t 2 , t 3 ♢ .
Then, we extend size-1 patterns of G 1 and G 2 by verifying the temporal continuity constraint. Given a threshold mincom = 1, ⟨(1 : a 1 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -)⟩, ¶t 1 , t 2 ♢ is extended with ⟨(1 : a 1 + ♣ 2 : a 2 -)⟩, ¶t 2 , t 3 ♢ as they share two common vertices v 1 and v 2 .

So we get a size-2 pattern ⟨(1 :

a 1 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -)(1 : a 1 + ♣ 2 : a 2 -)⟩, ¶t 1 , t 2 ♢ .
We note that ⟨(3 : a 2 -♣ 4 : a 1 -)⟩, ¶t 1 , t 2 ♢ shares no common vertices with any set of connected components of G 2 and G 3 . Thus it can not be extended and it is added to set of solutions. Other two size-1 patterns are extended in the same way, so we get:

⟨(6 : a 2 -♣ 11 : a 1 -♣ 12 : a 1 -)(6 : a 1 -a 2 -♣ 11 : a 1 -a 2 + ♣ 12 : a 1 -a 2 -)⟩, ¶t 1 , t 2 ♢ , ⟨(8 : a 1 + ♣ 9 : a 1 + a 2 -♣ 10 : a 2 +)(8 : a 1 + ♣ 9 : a 1 + a 2 -)⟩, ¶t 1 , t 2 ♢ .
We then calculate all sets of size-1 patterns from G 3 and G 4 :

⟨(6 : a 1 -a 2 -♣ 9 : a 1 + a 2 -)⟩, ¶t 3 , t 4 ♢ , ⟨(8 : a 1 + a 2 -♣ 10 : a 1 -a 2 + ♣ 11 : a 1 -a 2 + ♣ 12 : a 1 -a 2 -)⟩, ¶t 3 , t 4 ♢ .
We extend the extracted size-2 patterns by verifying the temporal continuity constraint. We notice that ⟨(1 : a 1 + ♣ 2 : a 1 + a 2 -♣ 5 : a 1 -)(1 : a 1 + ♣ 2 : a 2 -)⟩, ¶t 1 , t 2 ♢ shares no common vertices with any connected component sets of G 3 and G 4 , so it can not be extended and is added to the solution set. For another size-2 pattern ⟨(6 : a 2 -♣ 11 : a 1 -♣ 12 : a 1 -)(6 : a 1a 2 -♣ 11 : a 1a 2 + ♣ 12 : a 1a 2 -)⟩, ¶t 1 , t 2 ♢ , the following two size-1 patterns generated from G 3 and G 4 lead to this pattern satisfying the temporal continuity constraint:

⟨(6 : a 1 -a 2 -♣ 9 : a 1 + a 2 -)⟩, ¶t 3 , t 4 ♢ , ⟨(8 : a 1 + a 2 -♣ 10 : a 1 -a 2 + ♣ 11 : a 1 -a 2 + ♣ 12 : a 1 -a 2 -)⟩, ¶t 3 , t 4 ♢ .
The Ąrst one shares one common vertex v 6 and the second one shares two common vertices v 11 and v 12 . So two size-3 patterns are generated by those two extensions and we get:

⟨(6 : a 2 -♣ 11 : a 1 -♣ 12 : a 1 -)(6 : a 1 -a 2 -♣ 11 : a 1 -a 2 + ♣ 12 : a 1 -a 2 -)(6 : a 1 -a 2 -♣ 9 : a 1 + a 2 -)⟩, ¶t 1 , t 2 ♢ , ⟨(6 : a 2 -♣ 11 : a 1 -♣ 12 : a 1 -)(6 : a 1 -a 2 -♣ 11 : a 1 -a 2 + ♣ 12 : a 1 -a 2 -)(8 : a 1 + a 2 -♣ 10 : a 1 -a 2 + ♣ 11 : a 1 -a 2 + ♣ 12 : a 1 -a 2 -)⟩, ¶t 1 , t 2 ♢ .
Fig. 3.10 illustrates a detailed procedure for the extension of the size-1 pattern ⟨(6 : a 2 -♣ 11 : a 1 -♣ 12 : a 1 -)⟩, ¶t 1 , t 2 ♢ to the Ąnal solutions. In the same way, ⟨(8 : a 1 + ♣ 9 : a 1 + a 2 -♣ 10 : a 2 +)(8 : a 1 + ♣ 9 : a 1 + a 2 -)⟩, ¶t 1 , t 2 ♢ is extended to generate two size-3 patterns verifying the temporal continuity constraint:

⟨(8 : a 1 + ♣ 9 : a 1 + a 2 -♣ 10 : a 2 +)(8 : a 1 + ♣ 9 : a 1 + a 2 -)(6 : a 1 -a 2 -♣ 9 : a 1 + a 2 -)⟩, ¶t 1 , t 2 ♢ , ⟨(8 : a 1 + ♣ 9 : a 1 + a 2 -♣ 10 : a 2 +)(8 : a 1 + ♣ 9 : a 1 + a 2 -)(8 : a 1 + a 2 -♣ 10 : a 1 -a 2 + ♣ 11 : a 1 -a 2 + ♣ 12 : a 1 -a 2 -)⟩, ¶t 1 , t 2 ♢ .
Fig. 3.10 shows all extracted solutions (common vertices are in red) beginning from ¶t 1 , t 2 ♢ and satisfying user deĄned constraints mincos = 0, minvol = 2, minsup = 2, mincon = 1 and gap = 1.

Algorithm RPMiner

This method is detailed in algorithm 4. Line 1 corresponds to the extraction of connected components for each graph. Lines 3-7 construct size-1 patterns starting at time t 1 whose frequency are higher than the minimum threshold. For this purpose, the algorithm Ąrstly calculates all time combinations T k 1 containing t 1 (algorithm 4 line 5). Then it generates size-1 patterns by performing intersections of connected components occurring at those times Figure 3.9 Ű All solutions beginning from ¶t 1 , t 2 ♢ (algorithm 4 line 5, method ExtractIntersect). This method has been detailed in algorithm 1. Line 5 of algorithm 1 (detailed in algorithm 2) constructs candidate sets of size-1 patterns, i.e. common sets of vertices CandV and common sets of edges CandE for each time combination T . Next, Ąnal size-1 patterns are generated by Ąnding CandV having the same attribute values (trends) in T (algorithm 1 line 6, detailed in algorithm 2). After that, the other times are processed incrementally. For each time t i , RPMiner constructs all time combinations T k i containing t i (algorithm 4 line 12), and extracts size-1 patterns P i from intersections of connected components (algorithm 4 line 13). Then, it tries to extend each pattern P generated in the previous iteration with those size-1 patterns (algorithm 4 lines 14-15). If pattern P ′ resulting from the extension of P with P i satisĄes the temporal continuity constraint, it is added to the set of patterns generated at time t i (algorithm 4 lines 16-17). Otherwise, P is added to the set of solutions, and P i is saved for future extensions. In the end (line 26), all solutions generated at each time are put together and associated times are updated.

Fig. 3.11 depicts an example of algorithm execution with thresholds mincos = 0, minvol = 2, minsup = 2, mincom = 1 and gap = 1. The graph used is the example given in Fig. 3.2.

Algorithm 4: RPMiner: mining recurrent evolutions

Require: a dynamic attributed graph G, minsup: minimum frequency threshold, minvol: minimum volume threshold, mincom: minimum number of common vertices over time, mincos: minimum similarity threshold, gap: interval allowed between every two successive subgraphs Ensure: Sol: set of evolutions satisfying the constraints

1: C = ¶C i set of connected components of G i ♣ ∀c ∈ C i , c = (V, E, λ), ♣V ♣ ≥ minvol, ∀v ∈ V, ∃u ∈ V such that cosine(v, u) ≥ mincos♢ 2: Cand i = ∅, ∀i ∈ ¶1, 2, ..., ♣T ♣♢ 3: for k = minsup to ♣T ♣ do 4: T k i = ¶t j 1 , ..., t j k ♣t j 1 < t j k and t j 1 = t i ♢

5:

for each T ⊆ T k 1 do 6:

Cand 1 = Cand 1 ∪ ¶P 1 ∈ ExtractIntersect(C, T )♢ 7:
end for 8: end for 9: Sol i = ∅, ∀i ∈ ¶1, 2, ..., ♣T ♣♢ 10: for i = 1 + gap to ♣T ♣ do 11:

for k = minsup to ♣T ♣ do

12:

for each T ⊆ T k i do

13:

for each P i ∈ ExtractIntersect(C, T ) do

14:

for each P = (S, T P ) such as P ∈ Cand i-1 and T P = T do 15:

P ′ = ExtendW ith(P, P i )
16:

if com(P ′ ) ≥ mincom then 17:

Cand i = Cand i ∪ ¶P ′ ♢

18:

else 19:

Sol i-1 = Sol i-1 ∪ ¶P ♢

20:

Cand i = Cand i ∪ ¶P i ♢

21:

end if

22:

end for

23:

end for

24:

end for

25:

end for 26: end for 27: Sol = M ergeU pdate( ∀i∈T Sol i )

To keep the Ągure readable, We only display vertices associated to each pattern (attributes and times are omitted). At Ąrst, all size-1 patterns (column P 1 in Fig. 3.11) containing time t 1 are constructed (their frequency is higher than minsup and their volume is higher than minvol). Then, we extract all size-1 patterns starting at time t 2 (column "P 1 + P 2 " in Fig. 3.11). Next, we extend P 1 with P 2 by verifying the temporal continuity constraint mincom. If they satisfy the constraint, they will be candidates for extension in the next iteration (column "P 1 + P 2 + P 3 " in Fig. 3.11). Otherwise, P 1 is added to the set of solutions and patterns of P 2 are used for further extension. This processus continues until no more extensions can be performed. As shown in Fig. 3.11, red bold patterns are Ąnal solutions as they cannot be extended any more.

With this approach, a pattern will be generated and extended four times (from ¶t 1 , t 2 ♢, from ¶t 1 , t 3 ♢, from ¶t 2 , t 3 ♢, and from ¶t 1 , t 2 , t 3 ♢). For each generation, pattern starting times are updated. Notice that even if the processing of ¶t 2 , t 3 ♢ and ¶t 1 , t 2 , t 3 ♢ do not provide any new information, it can lead to generation of other patterns. All those combinations of intersections are thus necessary. That highlights the importance of our preprocessing to guarantee the scalability of tour approach. 

Algorithm time complexity and completeness

Complexity. To calculate time complexity for RPMiner, we frist consider the complexity of one intersection of k graphs, where minsup ≤ k ≤ ♣T ♣. In the worst case, the complexity of browsing vertices for all connected components of one graph is equal to ♣V ♣ + ♣E♣ [START_REF] Alho | ŞData Structures and Algorithms. Addision-Wesley[END_REF]. To calculate all intersected connected components of k graphs, we perform two by two intersections of graphs. It thus requires (k -1) intersections of two graphs. So the complexity related to intersections of k graphs is equal to

(♣V max ♣ + ♣E max ♣) * 2 * (k -1), where V max = ∪ t∈T V t and E max = ∪ t∈T E t .
Then, we need to calculate common attributes for each vertex of those intersected connected components, so the complexity of intersection of

k attributed graphs is: ♣A♣ * (♣V max ♣ + ♣E max ♣) * 2 * (k -1).
Next, we calculate the total number of time combinations. In the worst case minsup = 1 and gap = 1, we have to process all time combinations. It equals to

♣T ♣ i=1 ( ♣T ♣ i ).
Then, we note that for every time combination T ⊆ T k i , we have to perform intersections i -1 times. So, the complexity of all intersection of graphs, denoted by Com Intersection , is

Com Intersection = ♣T ♣ i=1 (i-1)( ♣T ♣ i ) * 2 * (♣V max ♣+♣E max ♣) * ♣A♣ = ((♣T ♣ -2) * 2 ♣T ♣-1 + 1) * 2 * (♣V max ♣+♣E max ♣) * ♣A♣.
Then we consider the complexity of extensions. In the worst case, the maximal number of connected components extracted in a timestamp is ♣V max ♣ (that is to say, each vertex is a connected component). Thus, the maximal number of patterns that can be generated by the successive extensions equals to ♣V max ♣ ♣T ♣-1 . As discussed above, the total number of time combinations is

♣T ♣ i=1 ( ♣T ♣ i ) = (2 ♣T ♣ -1)
. Thus, the complexity of generating all extensions is Com Extension = (2 ♣T ♣ -1) * ♣V max ♣ ♣T ♣-1 . Note that in practice, execution times of this part of the algorithm are quite low thanks to volume and temporal continuity constraints.

Based on the complexity of all graph intersections and the complexity of all extensions of patterns, the complexity of our algorithm is

Com T otal = Com Intersection + Com Extension = ((♣T ♣ -2) * 2 ♣T ♣-1 + 1) * 2 * (♣V max ♣ + ♣E max ♣) * ♣A♣ + (2 ♣T ♣ -1) * ♣V max ♣ ♣T ♣-1
Completeness.

The algorithm correctness and completeness can be justiĄed based on the properties of graph intersections: (1) all patterns constructed from the intersection of minsup graphs of G will satisfy the minimum frequency constraint; (2) all size-1 patterns satisfy non-redundancy constraints. These two properties guarantee that our algorithm extracts the complete set of size-1 patterns for each graph intersection. Furthermore, as mentioned in previous paragraph, our algorithm generates all the possible time combinations. They guarantee that our algorithm extracts the complete set of recurrent patterns. 

3.

Experimental results

The algorithm was implemented in C + +. Experiments were performed on PC with a 3.5GHz processor and 24 Gbytes of RAM. We used two real-world datasets and twenty synthetic datasets for our tests.

Datasets

Synthetic datasets. Graph sequences were generated by varying different parameters such as number of vertices per timestamp, number of attributes, number of edges and sequence size. Algorithm 5 illustrates the synthetic datasets generation. Firstly, we create ♣G♣ graphs (line 1 in algorithm 5). For each graph, we create ♣V ♣ vertices and then we associate each vertex with ♣A♣ attributes following an uniform distribution. Then for each graph, we create ♣E♣ pairs of vertices (edges), based on an uniform distribution.

Algorithm 5: Generation of synthetic datasets

Require: ♣V ♣: number of vertices per graph, ♣E♣: number of edges per graph, ♣A♣: number of attributes per vertex, ♣G♣: number of graphs, MaxValue: max value of attribute Ensure: G: an attributed dynamic graph 1: for i = 1 to ♣G♣ do 2:

Create G i = (V, E, λ), V = ∅, E = ∅ 3: for j = 1 to ♣V ♣ do 4: Create v j , v j ∈ V 5: for k = 1 to ♣A♣ do 6: a k =UniformDistribution(MaxValue), a k ∈ λ(v j )

7:

end for 8: end for

9:

for l = 1 to ♣E♣ do 10:

e l = (vy, v y ′ ), vy ∈ V, v y ′ ∈ V, y = U nif ormDistribution(♣V ♣), y ′ = U nif ormDistribution(♣V ♣)

11:

end for 12: end for DBLP dataset. This dataset used in [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF] represents DBLP authors and their co-publications between 1990 and 2009. This period is divide into 9 timesteps ( [[1990-1993][1992-1995]... [2006][2007][2008][2009]) where each timestep depicts co-authorship relationships and authorsŠ number of publications over 4 years. Vertices represent authors who published more than 10 papers. Edges exist between authors who published at least one paper together during this period. Each vertex is labeled by 43 attributes representing the number of publications in 43 different conferences and journals belonging to the Data Mining and Databases communities. The dataset is composed of 2,723 vertices per timestamp (authors), 10,737 edges in average (co-publications), 43 attributes (a set of selected conferences/journals) and 9 timestamps ([1990-1993][1992-1995]... [2006][2007][2008][2009]). Domestic US Flight dataset. This dataset used in [START_REF] Kaytoue | ŞTriggering Patterns of Topology Changes in Dynamic Graphs[END_REF] represents airport traffic in the US during the Katrina hurricane period (from 01/08/2005 to 25/09/2005). Hurricane Katrina was an extremely destructive and deadly tropical cyclone. It was also one of the costliest natural disasters and one of the Ąve deadliest hurricanes in the the United States history. The aim is to study the impact of Katrina hurricane on the US Ćights. Vertices represent US airports, each edge links two airports having at least one Ćight between them. Each vertex is associated to a set of attributes depicting traffic aspects (number of departures/arrivals, number of canceled Ćights, number of Ćights whose destination airport has been diverted, mean delay of departure/arrival and ground waiting time departure/arrival). Instead of using numeric values of attributes, we calculate the trend for each attribute over time, i.e. +,-and =, which mean that a value increases, decreases or remains constant over two consecutive timestamps. To summarize, DBLP dataset is composed of 280 vertices per timestamp (airports), 1206 edges in average (Ćight connections), 8 attributes and 8 timestamps (data is aggregated by weeks).

Quantitative Results

Impact of number of vertices and edges Fig. 3.12, Fig. 3.13 and Fig. 3.14 present execution times, number of solutions and maximum memory usage for twelve synthetic datasets with a growing number of vertices and edges (number of attributes is set to 50 and number of timestamps to 8). It can be noticed that our algorithm remains efficient when analyzing sequence consisting of 20000 vertices per graph and per date, with a very small minsup (2). Fig. 3.15,Fig. 3.16 and Fig. 3.17 show the impact of number of timestamps on our algorithm. We can observe that execution times, number of solutions and maximum memory usage increase exponentially with regard to the number of timestamps. This impact is gigh because we browse all combinations of graph intersections. Fig. 3.18,Fig. 3.19 and Fig. 3.20 show the impact of attribute number. As we can see, execution time increases linearly according to the number of attributes. RPMiner could process up to 1000 attributes per vertex, therefore permitting to model complex data. We can notice that RPMiner scales well on synthetic data according to number of vertices, number of edges and number of attributes, while the execution time increases exponentially w.r.t. number of graphs (timestamps).

Impact of number of timestamps

Impact of number of attributes

Impact of mincos Fig. 3.21 reports the performance of RPMiner on synthetic data when varying the parameter mincos (minimum similarity threshold). We can observe that number of solutions and execution time increase quickly when mincos is set to 0.2. It is because many big connected components are divided into smaller connected components which are more cohesive (whose vertices share more common neighbors). However, when mincos keeps on increasing, we remark that the number of solutions decreases sharply, Impact of minvol Fig. 3.24 shows performance on synthetic data w.r.t. different volume thresholds. The impact of volume threshold is quite signiĄcant. Indeed we can observe that this constraint has an effective impact on patterns whose volume is less than 15 while it has barely any effect on patterns larger than 15. This is because there exists numerous small connected components (composed of less than 15 vertices) whereas there are a few groups composed of more than 15 vertices. Fig. 3.25 shows performance on DBLP dataset w.r.t. different volume thresholds. We can observe that this constraint has an effective impact on the patterns whose volume is less than 5 while it has barely any effect on the patterns larger than 5. This is because there exists a great number of small groups of authors working together (composed of 2 or 3 authors) while there are only few groups composed of more than 10 authors.

Impact of mincom Fig. 3.26 shows performance on synthetic data w.r.t. different mincom thresholds. Impact of this threshold is less important compared with frequency and volume. We can observe that this constraint has an effective impact on patterns whose mincom is less than 5 whereas it has barely any effect on patterns larger than 5. This is because most of patterns evolve around a common core of less than 5 vertices while there are much fewer groups evolving around a common core of more than 5 vertices. Impact of gap Finally, we study RPMiner performance on synthetic data w.r.t. different gap thresholds. As shown in Fig. 3.27, impact of this threshold is very important. We can observe that number of solutions and execution time drop by half when the gap threshold varies from 1 to 4. This is because we divided by two the number of studied timestamps.

Qualitative interpretation DBLP dataset

We have also carried out a qualitative analysis of patterns extracted from real-world dataset DBLP. For this experiment, parameters were Ąrstly set to minvol = 2, minsup = 2, gap = 1 mincos = 0 and mincom = 2. Here, vertex attributes are the names of different conferences and journals which signify the corresponding authors published at least one article in this conference or journal during the period under consideration. The pattern depicts the evolution of a co-author network of Henry Tirri and Petri Myllymaki. This is a sequence of size 4 which represents an evolution over 3 timestamps. This sequence is repeated twice. First from 1990First from to 2005 (i.e. timesptamps [90-93] (i.e. timesptamps [90-93], [96-99] and [02-05]) and second from 1994 to 2009 (i.e. timesptamps [94-97], [00-03] and [06-09]). (from 1994 to 2009). RPMiner permits to extract all evolutions in co-author networks. However, when we set mincos to 0 (i.e. we only take into account the connectivity constraint), we could extract some patterns which describe evolutions of very large and sparse co-author networks (a network of more than 50 authors) where most of authors do not have direct co-authorship. It is difficult to interpret the evolution of such a big network because it may be composed of several smaller groups of co-authors. For this purpose, here we set mincos to a rather high value to focus on evolutions of cohesive and dense groups of co-authors (connected vertices), that work closely together. with thresholds minvol = 2, minsup = 2, gap = 3 mincos = 0.5 and mincom = 2. This pattern depicts the evolution of a co-author network for Myoung-Ho Kim and Jae Soo Yoo. This is a size 3 sequence which represents an evolution over 3 timestamps. This sequence is repeated twice: once from 1990 to 2005 (i.e. timesptamps [90-93], [96-99] and [02-05]) and again from 1994 to 2009 (i.e. timesptamps [94-97], [00-03] and [6][START_REF]Pond evolution by graph mining We conducted another experiments with parameters minvol = 10, minsup = 1, gap = 1 mincos = 0 and mincom = 5. In that context, extracted patterns could only occur one time. However, they are of great value to study viral disease and mangrove[END_REF][8][9]). Firstly, we analyse the evolution of this group of authors over time at co-authorship level. We can observe that at Ąrst, Myoung-Ho Kim and Jae Soo Yoo worked together with Jae-Woo Chang. Next, they changed their co-authorship by publishing together with Yoon-Joon Lee. Then, they did not publish with Yoon-Joon Lee any more. Regarding the evolution of their publications in different conferences/journals over time, we can make the following remarks. Between 1990 and 1993, Myoung-Ho Kim,Jae Soo Yoo, Jae-Woo Chang and Yoon-Joon Lee published together in DEXA. Besides, Myoung-Ho Kim and Yoon-Joon Lee co-authored in DASFAA. Then between 1996 and 1999, Myoung-Ho Kim, Jae Soo Yoo and Yoon-Joon Lee published together in DASFAA. Moreover, Myoung-Ho Kim and Jae Soo Yoo had publications in DataKnlEng. From 2002 to 2005, Myoung-Ho Kim and Jae Soo Yoo published together in the JIntellInfSys journal. This pattern also appears again (from 1994 to 2009). It shows Myoung-Ho Kim and Jae Soo YooŠs preference of conferences/journals as well as their publication strategy. Overall we could notice that researchers often Ąrstly publish articles in conferences, and then publish their work in journals later.

Discussions on results of DBLP dataset

Here we compare our results with patterns extracted in [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF]. Firstly, RPMiner extracts all possible evolutions of subgraphs (connected components). In the preprocessing stage, we extract more than 100 connected components from the Ąrst graph, where each component represents a co-authors network. That means there are at least more than 100 different network evolutions. However, [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF] can extract maximum 12 co-evolution patterns which depict only 12 different co-evolutions of co-author networks. It is because [START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF] consider only evolution of the same set of vertices over time. In comparison, RPMiner extracts all possible evolutions (more than 9000 recurrent patterns) of different components (co-author networks) because we consider evolutions of different vertices. For example, new co-authors can join a group or previous co-authors may no longer publish together. Secondly, we can notice that co-evolution patterns focus only on patterns having the same attributes over time. However, for DBLP dataset and many other real world datasets, attributes may also change over time. For example, the trend of authorsŠ publications number may evolve over time. To summarize, our algorithm RPMiner breaks through these two main limits by considering evolutions of both vertices and attributes. 3.36), reached in the East Coast of United States from 06/09 and disappeared on 17/09. These three periods correspond exactly to the pattern beginning times and we could notice that all hurricanes stronger than category 1 could result in the cancellations and delays of Ćights. Their inĆuences decrease when hurricanes become weaker. For readability of extracted patterns, we repost its description in Table 3.1 of which Ąrst column represents name of airport, the following columns represent attributes trends is consecutive time steps. If a table cell is empty, it means that corresponding airport is not included in this connected component (a set of airports connected by Ćights). As we can see in Fig. 3.33, this pattern contains 13 airports (in blue) all over the United States where 10 over 13 airports are located in the East Coast of United States (region strongly affected by the three hurricanes). The other three airports (Providence, Reno and Rochester) are located in the West Coast of United States (far away from the region strongly affected by Irene hurricane). However, these three airports were also affected by these hurricanes. As we can see from Table 3.1, the canceled Ćights (from airport Providence and airport Rochester to East Coast airports) increased in the Ąrst week. It is probably because the hurricanes were too strong in the destinations that they have to cancel the Ćights in the airports of departure. Fig. 3.37 shows another example of pattern. This pattern shows the impact of hurricanes on canceled/diverted Ćights and delays. First, the number of canceled Ćights and delays increased at these airports. Then, cancellations and delays decreased the following week when the hurricane became weaker. This pattern occurred at the beginning of August and then again at the beginning of September, because there were two hurricanes during this period. As we can see in Fig. 3.38, this pattern contains 11 airports (in blue) all over the United States where 9 over 11 airports are located in the East Coast of United States which is the region strongly affected by Irene hurricane and Ophelia hurricane. The other two airports Medford and Minot (located far away from East Coast of United States) were also affected by the hurricanes. Moreover, we note also that cancellations and delays increased when hurricanes came, while diverted Ćight remained always the same. It shows that hurricanes have strong impact on cancellations but have hardly impact on diverted Ćight. It may In this part, we propose to study a real-world problem in which we will use spatiotemporal patterns to analyze trends and evolutions of interesting objects (aquaculture ponds). This work was conducted in the framework of the "INDESO" project, which is dedicated to developing tools and methods to better manage marine and coastal resources in Indonesia. This project is Ąnanced by the Indonesian Ministry of Marine Affairs and Fisheries (KKP) and coordinated by CLS (Collecte Localisation Satellites). This work was done in collaboration with Niken Financia GUSMAWATI (as a part of her thesis), and Hugues Lemonnier and Benoit Soulard of the LEAD/IFREMER team .

US Flight dataset

In that context, we developed a complete KDD process (Fig. 4.1): from pre-processing to visualization and interpretation of results. In that task, input data is composed of a satellite image time series crossed with ground truth data generated by experts.

The data preparation step required a major contribution and use of image analysis methods. Depending on objects to be detected, identiĄcation of interesting objects to analyse could be very complex and require to adapt the most efficient segmentation methods.

In the data mining step, we have chosen two types of pattern domains:

1. Sequential patterns, which permit to describe frequent or rare temporal evolutions of objects without taking account relations between objects.

2. Our method RPMiner. It permits to mine recurrent patterns in a dynamic attributed graph. This new pattern domain allows to efficiently study recurrent evolutions of a set of objects which are closely connected.

Image data transformation is necessary for the data mining phase. On the one hand, it permits to transform information, i.e. temporal images extracted by object identiĄcation and calculation of their characteristics, into transactional data when using sequential patterns. On the other hand, it allows to construct a sequence of attributed graphs representing objects, their spatial relationships and their characteristics.

The pattern visualization phase (sequential and recurrent patterns) occurs naturally in images, by identifying objects and following their evolution. This step provides to experts with the possibility to choose a pattern from the list of extracted patterns, and and visualizes objects (in images by date) corresponding to that pattern evolution.

Problematic

In the past few years, IndonesiaŠs production in shrimp farming sector has experienced strong growth due to large expansion of areas. This activity contributes to the national income and optimize food security. However, its development has generated negative ecological and social effects. As consequences of diseases and environmental degradations, 250,000 ha of ponds have been abandoned. Sustainable practice in aquaculture farming is thus a high priority for the Indonesian government, in order to reduce those impacts. Consequently, useful tools need We have contributed to this project by proposing automatic analysis tools integrated in a complete KDD process. The objective is to monitor aquaculture pond evolution. Fig. 4.2 shows details of this KDD process. Firstly, we designed a process to provide a complete and precise aquaculture mapping by segmenting and classifying satellite images. Secondly, we developed methods to identify pond attributes (vegetation, water etc). Thirdly, we proposed methods to transform this satellite image time series into sequential dataset and a dynamic attributed graph. Next, we applied two different kinds of algorithms to study aquaculture pond evolution: a sequential mining algorithm which aims to study temporal evolutions; and our algorithm RPMiner which permits to study both spatial and temporal evolutions of aquaculture ponds. Finally, we visualized results on original satellite images. When interpreted results permit to describe, understand and manage shrimp farming.

2.

Data description

The dataset is composed of fourteen very high-resolution images of Perancak estuary (located in Bali province, Indonesia) taken between 2001 and 2015. Perancak estuary system is almost 5 km long and covers an area of approximately 1800 ha. It is located at northwest of Denpasar in Bali Province. This area was chosen because it was a complex zone consisting of aquaculture ponds of various sizes and types. They included active shrimp ponds in traditional, semi-intensive and intensive culture systems, abandoned shrimp ponds with water, without 

3.

Identification of aquaculture ponds

An automatic precise, and efficient generation of maps is important for experts because (1) to provide spatiotemporal information to decision support tools for sustainable Ąsheries policy, (2) experts could use them to develop indicators to monitor and assess ecosystems [START_REF] Revenga | ŞDeveloping indicators of ecosystem condition using geographic information systems and remote sensing[END_REF].

In this section, the objective is to identify aquaculture ponds and generate a corresponding cartography by using segmentation and classiĄcation methods. [START_REF] Burnett | ŞA multi-scale segmentation/object relationship modelling methodology for landscape analysis[END_REF] proposed a segmentation and classiĄcation method using Object-Based Image Analysis (OBIA). This approach is particularly suitable for analyzing medium and high resolution satellite images. Its mapping capability has been extended by incorporating spectral, contextual, textural and shape information of homogenous pixel sets [START_REF] Meinel | ŞThe potential use of very high resolution satellite data for urban areasâĂŤFirst experiences with IKONOS data, their classiĄcation and application in urban planning and environmental monitoring[END_REF][START_REF] Shackelford | ŞA combined fuzzy pixel-based and objectbased approach for classiĄcation of high-resolution multispectral data over urban areas[END_REF][START_REF] Blaschke | ŞObject based image analysis for remote sensing[END_REF]. However, OBIA faces some challenges:

(1) within-class heterogeneity and irrelevant features may increase classiĄcation uncertainty [START_REF] Kim | ŞMulti-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects[END_REF][START_REF] Chettri | ŞLinking spatio-temporal land cover change to biodiversity conservation in the Koshi Tappu Wildlife Reserve, Nepal[END_REF][START_REF] Dronova | ŞMapping dynamic cover types in a large seasonally Ćooded wetland using extended principal component analysis and object-based classiĄcation[END_REF].( 2) OBIA classiĄcation can hardly detect and delineate Ąne-scale elements even for very high resolution satellite images [START_REF] Yoshino | ŞVery high resolution plant community mapping at High Moor, Kushiro Wetland[END_REF].

On the other hand, traditional Pixel-Based Image Analysis (PBIA) has encountered issues with high-resolution imagery, resulting in Ša salt and pepper appearanceŠ that leads to very general land cover information, or limited accuracy in thematic maps [START_REF] Zhu | ŞAccuracy assessment for the US Geological Survey regional land-cover mapping program: New York and New Jersey region[END_REF].

In the present work, two segmentation and classiĄcation methods were Ąrstly applied to build the cartography of ponds [START_REF] Gusmawati | ŞAquaculture Pond Precise Mapping in Perancak Estuary, Bali, Indonesia[END_REF]: (1) Region Growing Segmentation algorithm followed by ISOSEG unsupervised classiĄcation method (RGT) implemented in SPRING software and (2) Isocluster Unsupervised ClassiĄcation method (IUC) implemented in ArcGIS software. RGT method, which has been widely used in many remote sensing applications, can extract closed contours [START_REF] Espindola | ŞParameter selection for region-growing image segmentation algorithms using spatial autocorrelation[END_REF]. It permits to extract water surface and pond embankment limits [START_REF] Virdis | ŞAn object-based image analysis approach for aquaculture ponds precise mapping and monitoring: a case study of Tam Giang-Cau Hai Lagoon, Vietnam[END_REF]. IUC has been used to classify aquaculture zones and generate aquaculture farm cadastre [START_REF] Hossain | ŞMonitoring shrimp farming development from the space: A RS and GIS approach in Kandleru Creek area, Andhra Pradesh, India[END_REF]. However, these existing methods could not provide an accurate mapping. Broken structure of embankments, low contrast between soil and pond embankments in dried-up ponds, ongoing pond development, abundance of algae as well as mangrove vegetation inside ponds made it difficult to extract enclosed contours with high accuracy. To provide an accurate automatic mapping, we proposed a method called Edge Detection Based (EDB) segmentation [START_REF] Gusmawati | ŞAquaculture Pond Precise Mapping in Perancak Estuary, Bali, Indonesia[END_REF].

IUC Method

IUC is a segmentation and classiĄcation method composed of three steps:

Image pre-processing and classification After contrast enhancement, several classes of land cover are identiĄed in the multi-spectral image using Iso Cluster, without knowledge of class type. These classes are re-classiĄed into pond and non-pond (2 classes) to generate two unique labels. Iso Cluster algorithm (K-means) is an iterative process that assigns each candidate cell to a cluster based on the minimum Euclidean distance. The process starts with arbitrary means, one for each cluster (users dictate the number of clusters). Every cell is assigned to the cluster with the closest mean. Next, new means are recalculated for each cluster, based on attribute distances of cells belonging to the cluster after the Ąrst iteration. The process is repeated: each cell is assigned to the closest mean in multidimensional attribute space, and new means are calculated for each cluster based on the new member cells. After running the speciĄed number of iterations, the migration of cells from one cluster to another is minimal; therefore, all the clusters become stable.

Automatic vectorization

ArcScan, as an extension tool in ArcGIS, that provides automatic vectorization. It is an of outline vectorization which generates vector polygon features on raster cell borders.

Post-vectorization refinement

We can use other editing tools, such as topology, advanced editing, and spatial adjustment, to further reĄne vectorization results, whenever necessary. For instance, several connected ponds which might appear in results could be separated by manual editing. Fig. 4.3 shows steps for aquaculture ponds detection using IUC method. 

RGT Method

RGT a segmentation and classiĄcation method composed of four steps:

Image pre-processing and filtering The panchromatic image was spatially Ąltered by a sliding kernel with one iteration, to enhance the contrast.

Image segmentation RGT method was performed with different similarity criteria and minimum area (pixels) thresholds to achieve optimal segmented output. Similarity controls grouping of similar pixels in a segment (region) while the minimum area threshold Ąlters smallest segments (areas).

Image classification A clustering algorithm ISOSEG available in SPRING software (Iterative Self Organizing Data Analysis Technique) allows to assign each image segment to different classes. ISOSEG initially assigns the same class to all segments, and then reduces variability by creating new classes. Several thresholds values and various iteration numbers are tested. ClassiĄcation output is converted into vector layers.

Post-vectorization refinement After classiĄcation and vectorization, manual reĄnement using editing tools can be conducted using ArcGIS, as for IUC post-vectorization. Fig. 4.4 shows steps for aquaculture ponds detection using RGT method. 

EDB Method

EDB is an automatic method composed of four steps:

Image pre-processing and filtering Panchromatic image is Ąrstly Ąltered using a Gaussian Ąlter to remove noise and obtain a smooth image.

Edge detection based segmentation and adaptive thresholds

In this part, an improved Canny edge detection method is employed to process the panchromatic image. Canny algorithm introduces two thresholds, which allows signiĄcant adaptation to local content in images. The higher threshold (T h) is calculated by Ostu method and the lower threshold (T l) is determined by using Canny initial formula T l = 0.5T h, which guarantees contour completeness and accuracy. Pixel values above T h are classiĄed as edge whereas pixel values lower than T l are discarded. Pixel value between those thresholds would be recognized as contours if they are already connected to an accepted pixel already classiĄed as contour.

Color based segmentation and image fusion

For the purpose of extracting drained ponds, a color classiĄcation using a color threshold of 90 is performed using Hue-Saturation-Value (HSV) system. Segmented panchromatic and segmented multispectral images are then merged to get a complete map of ponds.

Shape Recognition and Image Classification

A shape recognition method is then applied to Ąlter noise and other objects such as rivers and vegetation. An area threshold ranging from 300 to 10,000 pixels has been used to identify aquaculture ponds. Moreover, a shape factor (SF), derived from the ratio of perimeter to area showed promising results in identifying aquaculture ponds based on their elongated shape (SF ≥ 1.2). Vectorization was then conducted using ArcGIS tool.

Steps for aquaculture ponds detection using EDB method is shown in Fig. 4.5. 

Results

To calculate the accuracy of the maps generated by different segmentation and classiĄcation methods, a reference map is Ąrstly generated. It is composed of all pond boundaries which were delineated manually according to Ąeld surveys. Then, the accuracy was calculated by using a confusion matrix and kappa agreement coefficient and the proportion of correctly identiĄed ponds [START_REF] Foody | ŞThematic map comparison[END_REF].

Fig. 4.6 shows results from the three segmentation and classiĄcation methods used to generate an aquaculture map. As we can see, RGT method (upper right image) works well in homogeneous high contrast areas (Region g) by producing closed polygons. However, other areas such as dry ponds or low-level water ponds (region a region b and region f), as well as all textured areas such as mangrove in abandoned ponds (Region d) are under-segmented. Besides, RGT is not an automatic method and could not segment large images because it extracts a large number of ponds whose contours are connected (region c and region e) which requires a great amount of manual contour reĄnement.

Unsupervised classiĄcation implemented in IUC (bottom left image) provided a better overall mapping. However, as RGT method, IUC also under-segment highly heterogeneous areas (region a, region b and region d). Besides, pond connectivities are even more severe (as shown in region c and in region e). It needs many manual reĄnements which makes it impossible to provide a precise map.

As shown in Fig. 4.6 (bottom right image), EDB gave great results in all difficult situations. It permitted to detect and delineate ponds in heterogeneous and textured areas that were hardly extracted by RGT and IUC. Moreover, it also solved the connectivity problem. As we can see, EDB method provides the most precise maps. Percentages of ponds identiĄed by RGT, IUC and EDB, are 62% (after manual contour reĄnement), 81% (after contour manual reĄnement), and 96% (without manual contour reĄnement), respectively (Table 4.1). EDB accuracy is thus the highest while other methods could not provide a precise map even when followed by manual contour reĄnements. Accuracy assessments of these three methods are shown in Table 4.2. EDB overall accuracy is 84%, with a Kappa statistic of 0.68. As shown in this table, both of EDB accuracy and Kappa statistic are higher than RGT and IUC. 

Discussions on the results

As shown in Fig. 4.6, RGT was hardly able to generate complete ponds in heterogeneous areas. It could not locate object boundaries and edges because neighboring pixels with same or similar values could not be clustered in the same region. When over-segmentation occurred, the actual edge pixels might be joined to other pixels in their neighborhood [START_REF] Jain | ŞA survey on: content based image retrieval systems using clustering techniques for large data sets[END_REF]. The WV-2 image segmentation process, which took more than 3 hours, made the operation and data handling more complicated, while steps consisting of cadastre integration into map tasks were easily performed with an external GIS software. IUC could create a smooth cadastre of aquaculture ponds. A fast processing time and integration with GIS spatial analysis added advantages to this method. That method depends on spectral signature and statistical information in images, and users do not have control over the clustering process. As an unsupervised classiĄcation method, IUC is not sensitive to variation covariations in object spectral signature, especially in the case of the low contrast images. That method could miss some ponds due to their connectivities which inevitably lead to a lower map accuracy [START_REF] Fraisse | ŞDelineation of site-speciĄc management zones by unsupervised classiĄcation of topographic attributes and soil electrical conductivity[END_REF].

EDB approach achieves a high segmentation and classiĄcation accuracy. EDB overcomes the limitations related to sensitivity to noise and low image contrast by using a Gaussian Ąlter and Canny operator. It did not need manual reĄnement of contours and it could improve segmentation accuracy in a signiĄcant manner.

The EDB approach possesses two key advantages over both IUC and RGT. Firstly, the Canny operator improved by the Ostu method permits to improve segmentation accuracy by effectively retaining details and slight borders of objects. Secondly, EDB approach considers not only spectral properties but also shape features that provide a dominant factor for classiĄcation.

4.

Automatic identification of pond indicators

To study aquaculture pond evolution, we need to identify pond indicators. It is important to provide information to support decision makers with regard to abandoned pond rehabilitation, at pond and ecosystem scales. For this purpose, [START_REF] Gusmawati | ŞSurveying shrimp aquaculture pond activity using multitemporal VHSR satellite images-case study from the Perancak estuary, Bali, Indonesia[END_REF] identiĄed four boolean criteria for aquaculture ponds by analysing satellite images: (1) presence of water, (2) presence of vegetation, (3) presence of aerator(s), (4) presence of wooden feeding bridge(s). Then they developed an activity indicator based on these four criteria to monitor change in shrimp farm activity. However, it requires to perform systematic ground truth surveys, which are tedious and very expensive. To overcome this issue, an automatic method is needed to identify pond indicators on a large scale. As detailed next, we developed such automatic methods.

To detect water in ponds, we used the normalized difference water index (NDWI) deĄned by [START_REF] Gao | ŞNDWIâĂŤA normalized difference water index for remote sensing of vegetation liquid water from space[END_REF]. NDWI is deĄned as follows:

N DW I =  Green-N IR Green+N IR 
where Green is reĆectance of the green wavelength band and N IR is the near-infrared wavelength band reĆectance. This index is designed to (1) maximize water reĆectance by using green wavelengths; (2) minimize the low reĆectance of NIR by water features; and

(3) take advantage of the high reĆectance of NIR by vegetation and soil features. So water features having positive values are enhanced, while vegetation and soil usually have zero or negative values and therefore are suppressed.

Then, we used a threshold of 0.5 to identify water indicator [START_REF] Zhai | ŞComparison of surface water extraction performances of different classic water indices using OLI and TM im-ageries in different situations[END_REF]. If the mean NDWI value of a pond is greater than that threshold, that pond contains water. Otherwise, there is no water in that pond. Fig. 4.7 shows ponds with water (in red) on one original satellite image. The indicator accuracy (the ratio of correctly identiĄed ponds with water to total number of ponds with water) is 96%. To detect vegetation in ponds, we used the Landscape Normalized Difference Vegetation Index (NDVI) which is Ąrstly proposed by [START_REF] Tucker | ŞRed and photographic infrared linear combinations for monitoring vegetation[END_REF]. The NDVI was deĄned as follows:

N DV I =  N IR-Red N IR+Red 
where N IR is the near-infrared wavelength band reĆectance and Red is the red wavelength band reĆectance. It has been widely used to detect vegetation [START_REF] Nouri | ŞHigh spatial resolution WorldView-2 imagery for mapping NDVI and its relationship to tem-poral urban landscape evapotranspiration factors[END_REF][START_REF] Nouri | ŞNDVI, scale invariance and the modiĄable areal unit problem: An assessment of vegetation in the Adelaide Parklands[END_REF][START_REF] Alam | ŞA reĄned method for rapidly determining the relationship between canopy NDVI and the pasture evapotranspiration coefficient[END_REF]. The mean NDVI value of vegetation areas is between 0.3 and 0.8 [START_REF] Nouri | ŞHigh spatial resolution WorldView-2 imagery for mapping NDVI and its relationship to tem-poral urban landscape evapotranspiration factors[END_REF].

Thus, we used a threshold between 0.3 and 0.8 to identify vegetation. If the mean NDVI value for a pond is greater than 0.3 and less than 0.8, there is some vegetation in the pond. Otherwise, there is no vegetation. Fig. 4.8 shows ponds with vegetation (in red) detected by these thresholds. Accuracy of this indicator (ratio of correctly identiĄed ponds with vegetation to the total number of ponds with vegetation) is 94%.

To detect pond aerators, we Ąrstly detect all the pond contours (Fig. 4.10) from original image (Fig. 4.9), Then an area threshold ranging from 20 to 50 pixels was applied to Ąlter other small and big objects which are not aerators. Fig. 4.11 shows the aerators extracted from original image (Fig. 4.9). Accuracy (ratio of correctly identiĄed ponds with aerators to total number of ponds with aerators)of this indicator is 96%. The activity indicator has been identiĄed by conducting Ąeld surveys and analyzing satellite images visually [START_REF] Gusmawati | ŞSurveying shrimp aquaculture pond activity using multitemporal VHSR satellite images-case study from the Perancak estuary, Bali, Indonesia[END_REF]. In her thesis, she veriĄed that activity indicator is closely related to other four criteria mentioned above.

In conclusion, we have identiĄed interesting objects which are aquaculture ponds spatially located in satellite image. Each pond is depicted by four characteristics (indicators): presence of water, vegetation, aerator(s) and wooden feeding bridge(s). Those characteristics discriminate ponds with activity and abandoned ponds.

5.

Image dataset transformation

We transform images information into two data representations to analyze pond evolutions: a dynamic attributed graph and sequential data. It allows to extract recurrent patterns and frequent sequential patterns depicting pond evolution.

From cartographies to dynamic attributed graphs

Generation of vertices

To generate vertices, we extract all the ponds in each satellite image and save their id for each image. For example, as there are 1513 ponds in satellite image for the Ąrst date, so the pond id in Ąrst image goes from 1 to 1513. However, as ponds evolve over time, a pond could have different id in two consecutive images. As a consequence, we need to Ąnd the temporal relationships of ponds in two consecutive images. Firstly, we browse ponds in the Ąrst image. For every pond in this Ąrst image, we identify all ponds in the second image that are intersected with it (having a common region). This step permits to detect all Ąve possible pond evolutions: (1) fusion (several ponds correspond to one pond), ( 2) division (one pond corresponds to several ponds), (3) appearance (zero to one: zero pond corresponds to one pond), ( 4) disappearance (one to zero: one pond corresponds to zero pond) and ( 5) one-to-one (one pond corresponds to one pond). Then we repeat this step for all the following 12 dated images. Table 4.3 shows evolutions of the Ąrst 20 ponds. As we can see, this table is composed of 15 columns where the Ąrst column displays Ąnal ids of ponds and the remaining 14 columns contain original pond ids in the 14 satellite images. Each row represents the evolution of one pond over 14 times. If a pond is absent in an image, its id is set to "-1". Let us consider, for example, the pond in the Ąrst row. We can notice that this pond is absent in the Ąrst image. Then it appears in the second image with id 453. Next, it becomes pond 460 in the third image and pond 463 in the forth image etc. Finally, we standardise the Ąrst pond id by assigning it the id "1" (in the Ąrst column named "Final id"). To generate vertex attributes, we replace pond original ids by their corresponding attributes. Table 4.4 shows attributes of the Ąrst 20 vertices, where the Ąrst column presents the Ąnal id of ponds and the other columns represent the attributes of ponds for each date (image). As we can see, each table cell is composed of Ąve numbers representing the Ąve attributes of ponds: "1" for "No Aerator", "2" for "With Aerator", "3" for "No Bridge", "4" for "With Bridge", "5" for "No Vegetation", "6" for "With Vegetation", "7" for "No Water", "8" for "With Water", "9" for "No Activity", "10" for "With Activity". We note that several table cells are composed of "-1". It represents that there are no attributes for this pond, as it is absent in this image.

Generation of edges

We create edges by considering spatial relationships of ponds (vertices) in each image. For every pond in a given image, we deĄne a ROI (region of interest) to calculate all its neighbors in this region. This ROI is a circle region whose center is the pond center and its radius is equal to the MajorAxisLength, i.e., the major axis length (in pixels) of the ellipse that has the same normalized second central moments as the region. Then, we calculate the distance between this pond and every other aquaculture pond in this ROI (region of interest). If the distance is less than a user deĄned threshold (50 pixels), we create an edge between these two vertices (adjacent ponds). For example, Fig. 4.13 (right) shows the circular ROI (red) for the pond with red contour in Fig. 4.13 (left). With this ROI, we only need to calculate its possible neighbors in this region instead of considering all the other ponds of the map.

We illustrate this transformation with an example. Fig. 4.14 shows 3 consecutive satellite images (from 2011 to 2013). As we can see, from 2011 to 2012, pond 1 (in 2011) was divided into pond 1 and pond 2 (in 2012), pond 2 (in 2011) was divided into pond 3 and pond 4 (in 2012). Then, from 2012 to 2013, pond 7 (in 2012) was divided into pond 7 and pond 8 (in 2013). Based on these temporal relationships between vertices (ponds), we can Ąrstly construct all vertices. The Ąrst column of Table 4.5 shows the Ąnal ids of vertices and the other columns represent their original id in each image. To generate the vertex attributes, we only need to replace the original pond id in Table 4.5 by their corresponding attributes. Table 4.6 shows all attributes of this graph. Then, we generate all edges for each image (Table 4.7). Based on correspondences between the Ąnal id and the original id of ponds (as shown in Table 4.5), we transform Table 4.7 by using the Ąnal pond ids to obtain the Ąnal ids of edges (as shown in Table 4.8).

By using this method, we transform this 14 images time series into a dynamic attributed 

From cartographies to sequential data

To generate sequential data, we only have to use the Table 4.4 constructed in previous step. Table. 4.9 shows the Ąrst 20 sequences generated from this dataset. As we can see, this sequential data consists of 1915 sequences (ponds). Each sequence is composed of 14 itemsets in which each item describes one pond characteristic. This data representation considers all kinds of temporal evolutions such as pond appearance, 

< ¶W Ac, N B, N V, N W, N Ae♢, ¶W Ac, N B, N V, N W, N Ae♢, ¶W Ac, W B, N V, W W, N Ae♢ > (pond5 → pond7 → pond7) and < ¶W Ac, N B, N V, W W, N Ae♢, ¶W Ac, W B, N V, W W, N Ae♢, ¶W Ac, N B, N V, W W, N Ae♢ > (pond5 → pond7 → pond8).
Table 4.10 shows all the constructed sequences for this example (Fig. 4.14). We have to notice that sequence mining algorithms could introduce biases to study such data (support of extracted patterns could be higher than its real support). For example, let us consider the two sequences generated above. Given a support threshold=2, one of the frequent sequences of length 2 is < ¶W Ac, N B, N V, W W, N Ae♢, ¶W Ac, W B, N V, W W, N Ae♢ >. However, its real 6.

Pond evolution by sequential pattern mining

Firstly, we use sequence mining algorithms [START_REF] Srikant | ŞMining sequential patterns: Generalizations and performance improvements[END_REF][START_REF] Pei | ŞMining sequential patterns by patterngrowth: The preĄxspan approach[END_REF][START_REF] Fournier-Viger | ŞA knowledge discovery framework for learning task models from user interactions in intelligent tutoring systems[END_REF][START_REF] Fournier-Viger | ŞFast vertical mining of sequential patterns using co-occurrence information[END_REF] to study temporal evolutions of aquaculture ponds. In this work, we choose the algorithm developed by [START_REF] Fournier-Viger | ŞA knowledge discovery framework for learning task models from user interactions in intelligent tutoring systems[END_REF] to study aquaculture data because it extracts closed subsequences and it integrates Ąve useful constraints to Ąlter uninteresting patterns: (1) minimum support (minsup), (2) minimum time interval allowed between two successive itemsets, (3) maximum time interval allowed between two successive itemsets, ( 4) minimum time interval allowed between the Ąrst and the last itemset of a sequential pattern (min_whole_interval) and ( 5) maximum time interval allowed between the Ąrst and the last itemset of a sequential pattern (max_whole_interval). The second and third constraints are especially important and interesting to study aquaculture pond evolution. Indeed, they permit to extract consecutive evolutions of ponds. In addition, patterns extracted without those constraints could lead to ambiguity and be difficult to interpret.

We conducted a large number of experiments by varying different parameters. We present the most interesting patterns obtained with parameters minsup = 0.2 (20%), minimum time interval=1, maximum time interval=1, min_whole_interval=2 and max_whole_interval=6. The minimum and the maximum time interval are both set to 1 to extract consecutive evolutions of ponds.

To better analyze and interpret sequential patterns, we developed a visualisation tool using Matlab. For each sequential pattern, we visualize all its instances in the 14 consecutive images. For example, an extracted pattern ⟨ ¶W ithActivity♢, ¶W ithoutActivity♢, ¶W ithoutActivity♢, ¶W ithoutActivity♢, ¶W ithoutActivity♢ ⟩ of length 5 is shown in Fig. 4.15 (from 20014.15 (from to 20084.15 (from ) and Fig. 4.16 (from 20094.15 (from to 2012)). That pattern is displayed in two Ągures because the 10 corresponding images could not be displayed on one page. As shown in those Ągures, each red pond represents an instance of this pattern over 5 consecutive times. The time where each red contour appears represents the beginning time of this instance. This pattern depicts the evolution that an active pond became inactive and remained inactive in four consecutive timestamps. It is veriĄed by 668 ponds (frequency=668). As we can see from Ągure C and Ągure D in Fig. 4.15, most of ponds in the center became inactive from 2003 due to abandonment of those ponds by farmers after disease outbreaks. Then, we can notice that between 2010 and 2011, numerous ponds in the periphery became inactive (Ągure H and Ągure I in Fig. 4.16). This can be explained by strong temperature anomalies (-3 • C) during this period [START_REF] Gusmawati | ŞSurveying shrimp aquaculture pond activity using multitemporal VHSR satellite images-case study from the Perancak estuary, Bali, Indonesia[END_REF]. It reveals a gradient of abandonment from the center to the periphery of this agrosystem. [START_REF] Gusmawati | ŞSurveying shrimp aquaculture pond activity using multitemporal VHSR satellite images-case study from the Perancak estuary, Bali, Indonesia[END_REF] obtained the same result by using a manual approach. To analyze such temporal evolutions of ponds, they display the dates of last activity of each pond in one map (Fig. 4.17). This map gives us a global view of ponds evolutions. However, we could not know when and where an evolution locally occurs. 4.18 (from 20014.18 (from to 20084.18 (from ) and Fig. 4.19 (from 20094.18 (from to 2012) ) show another example of sequential pattern ⟨ ¶W ithActivity♢, ¶W ithoutActivity♢, ¶W ithActivity♢,⟩ of length 3. It is veriĄed by 478 ponds. That pattern represents an evolution over 3 consecutive timestamps. It describes an active pond became inactive in the second year and became active again in the third year. We can observe that this pattern is only present in periphery zones. It is due to the fact that farmers dry their ponds regularly to improve sediments. Fig. 4.20 (from 2001to 2008) and Fig. 4.21 (from 2009to 2011) show another example of sequential pattern ⟨ ¶W ithoutActivity♢, ¶W ithoutActivity♢, ¶W ithoutActivity♢, ¶W ithActivity♢ ⟩ which is veriĄed by 258 ponds. It depicts an evolution over 4 consecutive timestamps. It represents an inactive pond remained inactive in the three consecutive years and then became active in the forth year. We observe that in periphery zones, a large amount of inactive ponds became active in the second year. This is due to two kinds of human activities. Firstly, farmers felled trees to activate ponds. Secondly, some ponds were rehabilitated to produce Ąsh or shrimp after a period of abandonment [START_REF] Gusmawati | ŞSurveying shrimp aquaculture pond activity using multitemporal VHSR satellite images-case study from the Perancak estuary, Bali, Indonesia[END_REF]. Sequential mining algorithms also enable experts to use all attributes to analyze pond evolutions which could not be performed by the manual approach (considering only one attribute at a time) (Gusmawati et al., 2017). Fig. 4.22 and Fig. 4.23 show an example of sequential pattern ⟨ ¶W ithoutActivity, W ithV egetation♢, ¶W ithActivity, W ithoutV egetation♢ ⟩ which is veriĄed by 114 ponds. It represents an evolution over 2 consecutive timestamps. It represents inactive pond with vegetation becomes active pond without vegetation the next year. This is because mangrove trees were cut to rehabilitate aquaculture activity in those ponds. Moreover, wood can be used as a resource for farmers. This kind of patterns also allow experts to study automatically management of mangroves instead of time consuming manual image analysis [START_REF] Proisy | ŞMonitoring mangrove forests after aquaculture abandonment using time series of very high spatial resolution satellite images: A case study from the Perancak estuary, Bali, Indonesia[END_REF]. Conclusions and Discussions Sequence mining methods provide to domain experts a semi-automatic tool to analyze temporal pond and mangrove evolutions. Compared with traditional analysis done manually by experts, application of sequence mining methods have two signiĄcant advantages. Firstly, it takes experts a large amount of time to analyze ponds one by one manually, whereas sequence mining methods permit to extract interesting patterns found in [START_REF] Gusmawati | ŞSurveying shrimp aquaculture pond activity using multitemporal VHSR satellite images-case study from the Perancak estuary, Bali, Indonesia[END_REF] automatically. Secondly, experts could only consider one attribute at a time to analyze evolutions, while sequence mining methods enable to consider all attributes. However, these methods have also some limitations. Firstly, we cannot take into account the spatial relationships between objects. Secondly, division and fusion of objects could lead to biases of extracted pattern frequencies (could be higher than real frequency). Thirdly, frequency constraint permits to know how many sequences (objects) verify extracted pattern. Moreover, we do not know how many times extracted patterns appear in a single sequence. To deal with those limitations, we apply our approach RPMiner to this dataset.

7.

Pond evolution by graph mining

Compared with sequence mining algorithm in [START_REF] Fournier-Viger | ŞA knowledge discovery framework for learning task models from user interactions in intelligent tutoring systems[END_REF], our algorithm RPMiner permits to analyze both temporal and spatial evolutions. More precisely, instead of studying evolution of individual pond over time, recurrent patterns enable experts to study how a set of connected ponds (spatially) evolve together over time (temporally). Based on those extracted recurrent patterns, we could generate aquaculture farm cadastres, identify different farmersŠ practices and analyze mangrove dynamic etc. We conducted a large number of experiments by varying different parameters. We Ąrstly present several interesting patterns extracted with parameters minvol = 2, minsup = 2, gap = 1 mincos = 0 and mincom = 2. mincos is set to 0, because we focus on evolutions of groups of connected ponds, which usually represent farms.

To better analyze and interpret recurrent patterns, we also developed another visualisation tool using Matlab. We only visualize the Ąrst occurrence for each recurrent pattern because all occurrences of a recurrent pattern are the same. Fig. 4.24 shows an example of size-2 recurrent pattern. As mentioned previously, a recurrent pattern represents a set of connected vertices. However, we do not know how vertices are connected between each other. Thus, we visually represent a pattern by sequence of graphs with dotted lines for edges. Fig. 4.25 shows its Ąrst occurrence. That pattern depicts the evolution of 10 adjacent ponds. These adjacent inactive ponds (blue) became active (red) in the next year. The pattern appears two times, Ąrst one from 2009 to 2010 and other one from 2012 to 2013. That pattern enables experts to identify farms and establish aquaculture farm cadastre, because farms are usually managed in the similar manner by holders and recurrent patterns could depict these similar managements over time. We summarize this pattern in Table 4.11 in which the Ąrst column represents vertices of the farm (a set of adjacent ponds), the following columns represent their attributes values in consecutive timestamps. An other example of pattern is presented in Fig. 4.26 and its Ąrst occurrence is displayed in Fig. 4.27. This size-2 pattern depicts a set of active ponds (red) became inactive (blue) in the second year. It appears two times, farms but also to understand another traditional management by aquaculture holders. As we can see, 7 out of 8 adjacent ponds (red) remained active over time. However, one pond of this group remained inactive. This is because aquaculture holders usually use one pond to stock water to serve other active ponds. So this pattern can be used to identify speciĄc farm practices. (Table 4.13) gives this pattern details. 4.14, the pond1762 is divided into pond1762 and pond1763, and pond1767 is divided into pond1767 and pond1768. This is because it is more difficult to manage and control diseases in large ponds compared to small ponds. Therefore, to improve pond management and to control these diseases more efficiently, holders divided one pond into two or more smaller ponds. This pattern particularly shows one of the main advantages of our approach: they permit to Ąnd evolutions at vertex level, i.e. appearance, disappearance, fusion, division of ponds over time. shows its Ąrst occurrence. This size-4 pattern depicts the recurrent evolution of a set of 11 adjacent ponds over four timestamps. As we can see, most of those ponds were active (red) at Ąrst, and then became inactive (blue), active (red) and inactive again (blue) during the following three years (blue). This pattern appears two times: from 2007 to 2010 and from 2011 to 2014. This pattern highlights that aquaculture holders dry their ponds regularly to improve pond sediment.

Besides activity, recurrent patterns also permit to study the activity intensity level of aquaculture ponds. (1) Aerators are used to oxygenate the water column . They can raise the dissolved oxygen (DO) level to maintain oxygen level for animals and to permit aerobic bacteria to reduce biochemical oxygen demand thus improving water quality [START_REF] Moulick | ŞPrediction of aeration performance of paddle wheel aerators[END_REF]. ( 2) Mixing of pond water by aerators can reduce temperature vertical stratiĄcation and chemical substances (e.g. sulĄdes) [START_REF] Boyd | ŞShrimp aquaculture and the environment[END_REF]. (3) Changing culture system from intensive pond into semi-intensive pond may decrease the risk of disease emergence [START_REF] Alapide | ŞWSSV risk factors related to water physico-chemical properties and microĆora in semi-intensive P. monodon culture ponds in the Philippines[END_REF]. Then more and more ponds without vegetation and adjacent to ponds with vegetation began to be colonized by mangrove year after year. In 2008, almost all ponds (45 out of 53) were colonized by mangrove (blue). This kind of patterns can thus be used to follow pond colonization by mangrove trees.

Conclusions and Discussions

Results show that recurrent patterns extracted by our method RPMiner could help domain experts to identify farms, understand various managements of farmers and study disease and mangrove spread over adjacent ponds etc. RPMiner provides domain experts a new insight to study how a set of connected ponds evolve over time. As presented above, most of extracted patterns are not very "big" in term of size and frequency (one pattern with frequency 3 and size 3, one pattern with frequency 2 and size 4, some others with frequency 2 and size 2). In fact we have extracted numerous frequent and long patterns. We present here patterns selected by experts based on their domain interest and their interpretability. Moreover, evolution circles are long for some aquaculture monitoring. As a consequence, a less frequent pattern could be meaningful for domain experts. In future works, we could study aquaculture ponds in a short term (within one production circle of shrimps). Instead of yearly satellite images, we could use monthly images to study how farmers manage (add and reduce) aerators to control diseases, improve water quality and eventually increase the production of shrimp. With those monthly data, we may extract more frequent, longer but also meaningful patterns. In the pre-processing stage, bridges are very difficult to detect because of theirs sizes and the low contrast of image. Currently, they are detected manually by a domain expert. Thus, it would be interesting to propose methods to identify this indicator automatically. In this application, recurrent patterns depict evolutions of sets of adjacent ponds. They are local patterns, describing recurrent phenomena depending on their locations. In the future work, we would develop a new algorithm to extract more general patterns: frequent evolution of connected ponds, considering all pattern occurrences. When comparing our approach with sequence mining algorithms [START_REF] Fournier-Viger | ŞA knowledge discovery framework for learning task models from user interactions in intelligent tutoring systems[END_REF][START_REF] Fournier-Viger | ŞFast vertical mining of sequential patterns using co-occurrence information[END_REF][START_REF] Pei | ŞConstraint-based sequential pattern mining: the pattern-growth methods[END_REF], we can see that RPMiner considers not only temporal relationships but also spatial relationships between vertices. Instead of studying evolutions individually, RPMiner permits to study evolutions of a set of connected vertices over time. Moreover, RPMiner considers more complicated evolutions, such as appearance, disappearance, fusion and division of vertices, while we have to introduce biases to study such data with sequence mining algorithms. Another difference is that the frequency deĄned by sequence mining methods is the number of sequences verifying the pattern, whereas frequency deĄned by RPMiner shows how many times that a recurrent pattern occurs over time. Those two frequency deĄnitions give experts two different angles to understand and analyze evolutions.

1.

Conclusions

This thesis focuses on spatio-temporal data mining and its application to aquaculture monitoring. The application of aquaculture monitoring aims at describing, understanding and monitoring shrimp farming in Indonesia based on time series of satellite images. Several works have used sequence mining and graph mining algorithms to analyze such complex data. However, these approaches are limited. Sequence mining algorithms donŠt consider spatial relationships between vertices or only consider direct neighboring environment, while most graph mining algorithms can study only one attribute per object instead of considering more than one attribute. For this purpose, we use a more general model, dynamic attributed graph, to study spatio-temporal data. However, neither classical sequence mining algorithms nor graph mining algorithms enable to study dynamic attributed graph. Traditional algorithms could not mine this model because mining dynamic attributed graph is much more complex compared with sequential data or dynamic labeled graph. For this purpose, we proposed a novel algorithm, RPMiner, to study such graph. Different from other strategies that are based on depth-Ąrst search, breadth-Ąrst search, successive projections of data or generate-test strategies, our algorithm is based on successive intersections of graphs. With connected subgraphs generated from graph intersections, patterns are progressively extended. The advantage of this approach it to avoid the generation of a large number of patterns which do not verify constraints and to explore the graph in an incremental manner. Our algorithm extracts recurrent patterns. They are in some ways sequences of connected subgraphs verifying several constraints. Those constraints aim to reduce the search space and to extract meaningful patterns. We use two constraints considering the graph structure, i.e. the connectivity and the cohesiveness. We consider also a minimum frequency constraint to Ąlter unfrequent patterns. This constraint is based on the number of recurrences of a pattern over time. Two temporal constraints have also been used: temporal continuity and time gap. Temporal continuity enables to target patterns which describe evolutions around a common individual core. Fixed time gap allows to study evolutions in a short term and in a long term.

To evaluate our method, we have done an experimental study on both syndetic and real-world datasets. Our algorithm scales well on synthetic data according to the number of vertices, the number of edges and the number of attributes (up to 1000 attributes per vertex) while the execution time increases exponentially with the number of graphs. Our algorithm can mine bigger graphs than most algorithms proposed for mining dynamic labeled graphs [START_REF] Inokuchi | ŞA fast method to mine frequent subsequences from graph sequence data[END_REF]Inokuchi and Washio, 2010b;[START_REF] Yan | Şgspan: Graph-based substructure pattern mining[END_REF]. If we compare recurrent patterns with patterns extracted by other dynamic attributed graph mining algorithms on the same dataset [START_REF] Kaytoue | ŞTriggering Patterns of Topology Changes in Dynamic Graphs[END_REF][START_REF] Desmier | ŞCohesive co-evolution patterns in dynamic attributed graphs[END_REF], we observe that our approach have results of the same order of magnitude although the extracted patterns are more general (and so more costly to extract). It demonstrates the interest of the proposed approach and its efficiency. Our approach has been used to study evolutions of aquaculture farming. In that context, we developed a complete KDD process: from pre-processing to visualization and interpretation of results. We proposed an automatic and accurate method to extract aquaculture ponds from a low contrast satellite images. Then, we developed several methods to identify pondsŠ attributes. Two automatic processes have been developed to transform images of aquaculture ponds to sequential data and dynamic attributed graph. We applied a sequence mining algorithm to study temporal evolutions, and compare extracted patterns to the ones extracted with our algorithm RPMiner (which considers both spatial and temporal aspects). Finally, extracted patterns were visualized on original satellite images and validated by domain experts. This application showed that our approach could give experts a new insight to study spatio-temporal phenomena. It extracts recurrent evolutions of groups of adjacent ponds. Moreover, our approach permits to study complex spatio-temporal phenomena by considering appearance, disappearance, fusion and division of vertices over time.

Perspectives

Using other strategies

We developed a new algorithm, different from others based on depth-Ąrst search, breadth-Ąrst search or successive projections strategies. Our algorithm is an incremental approach based on successive intersections and extensions of connected components occurring over time. It requires a large mount of memory because during this extension process, we have to keep lots of patterns in memory to generate and extend patterns in the next iteration. In the future work, we propose to explore the search space in a depth-Ąrst manner. Instead of generating all patterns incrementally, we could generate only a part of size-1 patterns by processing one time combination T (T ⊆ T k 1 ) and extend them until no more patterns could be generated or extended. Then we could generate another part of size-1 patterns by processing another time combination T ′ (T ′ ⊆ T k i -T). This process could generate patterns progressively until T k i becomes empty. It can reduce memory usage and allows to study a longer sequence of dynamic attributed graphs.

Parallel computing

Parallel execution of an algorithm on multi-core architecture enables to dramatically increase performance [START_REF] Gepner | ŞMulti-core processors: New way to achieve high system performance[END_REF][START_REF] Negrevergne | ŞPara Miner: a generic pattern mining algorithm for multi-core architectures[END_REF]. The original search space could be divided into several portions where each portion can be independently computed. In our approach, an important step is to calculate the graph intersections. The computation of all possible size-1 patterns could be parallelized for each connected component. Besides, distributed systems can scale our algorithm. For example, Hadoop (Hadoop, 2011) is a widely-used software framework for distributed storage and processing of large data sets. However, it processes data in and out of the disk. Besides, it is not so efficient for iterative processing, as Hadoop does not support cyclic data Ćow. Spark [START_REF] Zaharia | ŞApache spark: a uniĄed engine for big data processing[END_REF] is a parallel data processing framework. It permits to run multiple tasks in parallel. Moreover, it provides in-memory processing which could run 100 times faster than HadoopŠs MapReduce. It permits applications to access data from RAM instead of disk. In the future work, Spark could be used to improve the performance of our algorithm.

Mining more global patterns

Patterns extracted by our algorithm RPMiner represent recurrent evolutions of sets of connected vertices. Those patterns are in some ways local patterns, as it depicts recurrent evolution of speciĄc sets of connected vertices. We do not know whether there exits other sets of vertices following same evolutions. Thus, a perspective of our work is to extract more global patterns in dynamic attributed graph (e.g. frequent patterns instead of recurrent). For this, we can use a post-processing approach or study a new pattern domain (and develop a new mining algorithm).

Clustering A post-processing could be performed to group similar recurrent patterns. It could facilitate interpretation and permit to seek for more general patterns, independent of vertices. Comparing sequence similarity measures has been much studied, [START_REF] Saneifar | ŞS 2 MP: similarity measure for sequential patterns[END_REF] proposed an adjustable similarity measure to group similar sequences. This measure considers not only itemset similarities but also their positions in sequences. In recent years, the problem of determining the similarity or distance between graphs has raised much more attention [START_REF] Cha | ŞComprehensive survey on distance/similarity measures between probability density functions[END_REF][START_REF] Papadimitriou | ŞWeb graph similarity for anomaly detection[END_REF][START_REF] Jeh | ŞSimRank: a measure of structural-context similarity[END_REF]. [START_REF] Pelillo | ŞReplicator equations, maximal cliques, and graph isomorphism[END_REF] used graph isomorphism to evaluate the graph similarity. Two graphs are similar if they are isomorphic between these two graphs. [START_REF] Zager | ŞGraph similarity scoring and matching[END_REF] assessed the similarity between two graphs by calculating similarity scores of vertices and edges. However, those measures have to be adapted to recurrent patterns because we are working with sequence of sets of itemsets, representing evolutions of connected graphs and not only sequence of itemsets. In the future work, new similarity measure and an algorithm could be proposed to group similar recurrent patterns.

New pattern domain and new mining algorithm

A second approach could be to extract more general patterns: frequent subgraph evolutions, considering all pattern occurrences in dynamic attributed graph. The main advantage of these patterns is to consider evolutions independently from vertices in which they occur. In a spatio-temporal context, it means that such patterns would highlight phenomena independently from their locations. In the future work, we will study how to adapt our strategy to extract such patterns.
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Figure 2

 2 Figure 2.1 Ű The vertical representation of the sequence database shown in Table 2.1

Figure 2

 2 Figure 2.2 Ű Example of a labeled dynamic graph

Figure 2

 2 Figure 2.3 Ű Example of graph sequence database

Figure 2

 2 Figure 2.4 Ű (a) example of edge-evolving network where each edge is scored either 1 or -1 (solid or dashed, respectively). (b) the heaviest subgraph composed of ¶(A, B), (A, C), (B, E)♢ over the sub-interval [1, 3]. (c) the heaviest subgraph composed of ¶(A, B), (A, C), (B, E), (D, E)♢ over the sub-interval [1, 5].

Figure 2

 2 Figure 2.5 Ű An email communication database[START_REF] Lee | ŞMining Weighted Frequent Sub-graphs with Weight and Support Affinities[END_REF] 

Figure 2

 2 Figure 2.6 Ű Graph sequence d and its union graph g u (d)

Figure 2

 2 Figure 2.7 Ű (a) A graph database DB (b) a frequent relevant induced subgraph subsequence of DB

Figure 2

 2 Figure 2.8 Ű (a) A graph database DB (b) a frequent relevant induced subgraph subsequence of DB

Figure 2

 2 Figure2.9 Ű (a) A relational pattern (b) A coevolving relational motif,(Ahmed and Karypis, 2015a) 

Figure 2 .

 2 Figure 2.11 Ű Example of a pattern with three different occurrences

Figure 2 .

 2 Figure 2.12 Ű Example of dynamic attributed graph

  measures considering only the direct neighbourhood of vertices. Another interesting measure named volume is deĄned to Ąnd interesting patterns. This measure evaluates the size of pattern as a three-dimensional volume: volume((N, T, P )) = ♣N ♣ × ♣T ♣ × ♣P ♣.

Figure 2 .

 2 Figure 2.14 Ű Example of cohesive co-evolution pattern

Figure 3

 3 Figure 3.1 Ű An example of dynamic attributed graph G

Figure 3

 3 Figure 3.2 Ű Toy example: from values to trends

Figure 3

 3 Figure 3.3 Ű Main process of our algorithm

Figure 3

 3 Figure 3.5 Ű Example of a dynamic attributed graph

  For example, given a threshold minvol = 2, to extract subgraphs (size-1 patterns) of Algorithm 3: CommonAttributes: mining Ąnal size-1 patterns Require: v, V , CandE, T , sol = (V, λ): an attribute subgraph , Cand: set of size-1 patterns Ensure: Cand: set of size-1 patterns 1: if V = ∅ and vol(sol) ≥ minvol then 2: Cand = Cand ∪ sol 3: else 4: for each neighbor of v, N (v) such as N (v) ∈ V and (v, N (v)) ∈ CandE do 5:

Figure 3

 3 Figure 3.6 Ű Size-1 pattern examples

Figure 3 . 7 Ű

 37 Figure 3.7 Ű Intersections and extensions in parallel of patterns from ¶t 1 , t 2 ♢

Figure 3

 3 Figure 3.8 Ű An example of extension of a size-1 pattern

Figure 3 .

 3 Figure 3.10 Ű Example of solutions

Figure 3 .

 3 Figure 3.11 Ű An example of execution of algorithm

Figure 3 .

 3 Figure 3.12 Ű Impact of number of vertices and edges per graph on the execution time (synthetic data)

Figure 3 .

 3 Figure 3.14 Ű Impact of number of vertices and edges per graph on the memory (synthetic data)

Figure 3 .

 3 Figure 3.22 Ű Impact of minsup on the number of solutions and the execution time (synthetic data)

Figure 3 .

 3 Figure 3.23 Ű Impact of minsup on the number of solutions and the execution time (DBLP dataset)

  Fig. 3.28 shows an example of pattern extracted in the that data: ⟨( Henry Tirri: KDD, ICML ♣ Petri Myllymaki: KDD, ICML) ( Henry Tirri: KDD, IntellDtAnal ♣ Petri Myllymaki: KDD, IntellDtAnal) ( Henry Tirri: ECMLPKDD ♣ Petri Myllymaki: ECAI) ⟩, ¶[90 -93], [94 -97]♢ .

Figure 3 .

 3 Figure 3.24 Ű Impact of minvol on the number of solutions and the execution time (synthetic data)

  So parameters were then set to minvol = 2, minsup = 2, gap = 5 mincos = 0.4 and mincom = 2. As shown in Fig. 3.29, an example of pattern extracted from DBLP dataset is ⟨(W eiyiM eng : IEEET ransKnowlDtEn, ICDE ♣ ClementT.Y u : IEEET ransKnowlDtEn, ICDE) (W eiyiM eng : IEEET ransKnowlDtEn, CIKM, V LDB, KnowlInf Syst, V LDBJ, SIGM OD, DataKnlEng ♣ ClementT.Y u : IEEET ransKnowlDtEn, CIKM, V LDB, KnowlInf Syst, V LDBJ, SIGM OD, DataKnlEng ♣ AnHaiDoan : SIGM OD) ⟩, ¶[90 -93], [94 -97]♢ . This pattern describes the evolution of Weiyi Meng and Clement T. Yu co-author net-work. This is a sequence of size 2 which represents an evolution over 2 timestamps. This sequence is repeated twice, Ąrst from 1990 to 2003 (i.e. timesptamps [90-93] and [00-03]), and then from 1994 to 2007 (i.e. timesptamps [94-97] and [04-07]). This pattern describes evolution of a group of authors over time at co-authorship level. Between 1990 and 1997, only Weiyi Meng and Clement T. Yu worked together. Then, from 2000 to 2007, we observe that their co-author network became bigger with Weiyi Meng joining their team. On the other hand, this pattern highlights evolutions of their publications over time. We can see that between 1990 and 1993, Weiyi Meng and Clement T. Yu published together only in two conferences IEEETransKnowlDtE and ICDE. Then, from 2000 to 2003, besides EEE-TransKnowlDtEn, Weiyi Meng and Clement T. Yu had much more publications together in other conferences, i.e. CIKM, VLDB, KnowlInfSyst, VLDBJ and DataKnlEng. In addition, we can notice that Weiyi Meng and Clement T. Yu published together with Weiyi Meng in SIGMOD conference. This pattern appears another time (from 1994 to 2007).

Figure 3 .

 3 Figure 3.29 Ű Second pattern extracted from DBLP with the parameters minvol = 2, minsup = 2, gap = 5 mincos = 0.4 and mincom = 2

Figure 3 .

 3 Figure 3.30 Ű Third pattern extracted from DBLP with the parameters minvol = 2, minsup = 2, gap = 3 mincos = 0.4 and mincom = 2

  Figure 3.31 Ű Forth pattern extracted from DBLP with the parameters minvol = 2, minsup = 2, gap = 3 mincos = 0.4 and mincom = 2

Figure 3 .

 3 Figure 3.32 Ű First pattern extracted from Domestic US Flight dataset with the parameters minvol = 2, minsup = 2, gap = 1 mincos = 0.4 and mincom = 2. C: cancellation, D: diverted Ćights, DD: the mean delay of departure, DA: the mean delay of arrival, WD: the ground waiting time departure, WA: the ground waiting time arrival

Figure 4 .

 4 Figure 4.1 Ű Complete KDD process to study evolutions of aquaculture ponds

Figure 4 .

 4 Figure 4.2 Ű Complete process to study evolutions of aquaculture ponds

Figure 4 .

 4 Figure 4.3 Ű Aquaculture ponds detection using IUC method

Figure 4 . 4 Ű

 44 Figure 4.4 Ű Aquaculture ponds detection using RGT method

Figure 4 .

 4 Figure 4.5 Ű Aquaculture ponds detection using EDB method

Figure 4 .

 4 Figure 4.6 Ű Aquaculture map obtained using three classiĄcation methods. Upper left image: World View-2 image; Upper right image: RGT; Bottom left image: IUC; Bottom right image: EDB. Region a:dry active pond; Region b: abandoned pond with young vegetation; Region c, Region e and Region f: dry abandoned pond; Region d: watered active pond; Region g: abandoned pond with mature vegetation

Figure 4 . 7 Ű

 47 Figure 4.7 Ű IdentiĄcation of ponds with Water

Figure 4 .

 4 Figure 4.8 Ű IdentiĄcation of ponds with vegetation

Figure 4 .Figure 4 .

 44 Figure 4.10 Ű Pond contour detection from Fig. 4.9

Figure 4 .

 4 Figure 4.12 Ű Bridges of ponds

Figure 4 .

 4 Figure 4.13 Ű Example of ROI

Table 4 . 4 Ű

 44 Figure 4.14 Ű An example of ROI over 3 consecutive time (from to 2011 to 2013)

Figure 4 .

 4 Figure 4.15 Ű First sequential pattern ⟨ {WithActivity}, {WithoutActivity}, {WithoutActivity}, {WithoutActivity}, {WithoutActivity} ⟩ (from 2001 to 2008). Red contours represent active ponds which became inactive in the 4 consecutive years. A: 12/10/2001, B: 09/03/2002, C: 21/02/2003, D: 27/06/2003, E: 22/09/2007, F: 19/07/2008

Figure 4 .

 4 Figure 4.18 Ű Second sequential pattern ⟨ {WithActivity}, {WithoutActivity}, {WithActivity} ⟩ (from 2001 to 2008). Red contours represent active ponds became inactive in the second years and then became active again in the third year. A: 12/10/2001, B: 09/03/2002, C: 21/02/2003, D: 27/06/2003, E: 22/09/2007, F: 19/07/2008

Figure 4 .

 4 Figure 4.20 Ű Third sequential pattern ⟨ {WithoutActivity}, {WithoutActivity}, {WithoutActivity}, {WithActivity} ⟩ (from 2001 to 2008). Red contours represent inactive ponds remained inactive in the two consecutive years and then became active in the forth year. A: 12/10/2001, B: 09/03/2002, C: 21/02/2003, D: 27/06/2003, E: 22/09/2007, F: 19/07/2008

Figure 4 .

 4 Figure 4.22 Ű Forth sequential pattern ⟨ {WithoutActivity, WithVegetation}, {WithActivity, With-outVegetation} ⟩ (from 2001 to 2008). Red contours represent inactive pond with vegetation becomes active pond without vegetation in the next year. A: 12/10/2001, B: 09/03/2002, C: 21/02/2003, D: 27/06/2003, E: 22/09/2007, F: 19/07/2008

Figure 4 .

 4 Figure 4.24 Ű First recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB: WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4 .

 4 Figure 4.26 Ű Second recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB: WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4 .

 4 Figure 4.27 Ű Second recurrent pattern. It depicts a set of active ponds (red) became inactive (blue) in the next year. It appears twice, one from 2007 to 2008 and the other from 2001 to 2012.

Figure 4 .

 4 Figure 4.28 Ű Third recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB: WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4 .

 4 Figure 4.29 Ű Third recurrent pattern. It depicts the evolution of 8 ponds, where 7 of 8 adjacent ponds (red) remained active over time while one pond (blue) of this group remained inactive. This recurrent pattern repeats three times.

Figure 4 .

 4 Figure 4.30 Ű Forth recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB: WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4 .

 4 Figure 4.31 Ű Forth recurrent pattern. It depicts the evolution of 6 adjacent ponds (6 inactive ponds in blue became active in red in the next year). This pattern appears two times: from 2007 to 2008 and then from 2009 to 2000.

Figure 4 .

 4 Figure 4.32 Ű Fifth recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB: WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4 .

 4 Figure 4.33 Ű Fifth recurrent pattern. It depicts a set of 6 adjacent active ponds (red) in the center region became inactive (blue) in the two following years. It appears two times, one from 2007 to 2009 and the other from 2013 to 2014.

Figure 4 .

 4 Figure 4.34 Ű Sixth recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB: WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4 .

 4 Figure 4.35 Ű Sixth recurrent pattern. It depicts the evolution of a set of 11 adjacent ponds over four timestamps. Most of these ponds were active (red) Ąrstly became inactive (blue) in the second year, then became active again (red) in the third year and Ąnally became inactive (blue) in the forth year. This pattern appears two times: from 2007 to 2010 and from 2011 to 2014.

Fig. 4 .

 4 Fig.4.34 displays another recurrent pattern extracted from the aquaculture dataset. Fig.4.35 shows its Ąrst occurrence. This size-4 pattern depicts the recurrent evolution of a set of 11 adjacent ponds over four timestamps. As we can see, most of those ponds were active (red) at Ąrst, and then became inactive (blue), active (red) and inactive again (blue) during the following three years (blue). This pattern appears two times: from 2007 to 2010 and from 2011 to 2014. This pattern highlights that aquaculture holders dry their ponds regularly to improve pond sediment.

Fig. 4 .

 4 36 describes another example of recurrent pattern. Fig. 4.37 shows its Ąrst occurrence. That pattern depicts the evolution of a farm composed of 8 adjacent ponds. As we can see in this Ągure, most of active ponds with aerators (red) had no more aerators (blue) in the next year. This size-2 pattern appears two times: from 10/2001 to 03/2002 and from 02/2003 to 06/2003. Farmers add and reduce the number of aerators of active ponds regularly because of these three following reasons:

Figure 4 .

 4 Figure 4.36 Ű Seventh recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB: WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4 .

 4 Figure 4.37 Ű Seventh recurrent pattern. It depicts the evolution of a farm composed of 8 adjacent ponds. Most of the active ponds with aerators (red) had no more aerators (blue) in the next year. This pattern appears two times: from 10/2001 to 03/2002, from 02/2003 to 06/2003.

Fig. 4 .

 4 Fig. 4.39 describes another example of recurrent pattern. As shown in Fig. 4.38, this size-2 pattern appears two times: from 10/2001 to 03/2002 and from 02/2003 to 06/2003. It shows that farmers usually adopt similar measures (adding and reducing aerators regularly) to manage active ponds.

Figure 4 .

 4 Figure 4.38 Ű Eighth recurrent pattern. WAc: WithActivity, NAc: WithoutActivity, WB: WithBridge, NB: WithoutBridge, WV: WithVegetation, NV: WithoutVegetation, WW: WithWator, NAc: WithoutWator, WAe: WithAerator, NAe: WithoutAerator

Figure 4 .

 4 Figure 4.39 Ű Eighth recurrent pattern. It depicts the evolution of a farm composed of 6 adjacent ponds. These active ponds with aerators (red) had no more aerators (blue) in the next year. This pattern appears two times: from 10/2001 to 03/2002, from 02/2003 to 06/2003

Figure 4 .

 4 Figure 4.41 Ű Tenth recurrent pattern. This pattern shows mangrove spread in a farm composed of 53 ponds over 6 consecutive times (from 2001 to 2008), where red ponds represent the ponds without vegetation and blue ponds represent the ponds with vegetation

Fig. 4 .

 4 Fig. 4.41 displays a recurrent pattern describing mangroves evolution: (⟨ (Pond888, ... , Pond1207: WithoutVegetation ♣ Pond1000, ... , Pond1174: WithVegetation) ... (Pond888, ... , Pond1207: WithVegetation) ⟩, ¶10/2001♢). This pattern shows mangrove development in a farm composed of 53 ponds over 6 consecutive times (from 2001 to 2008). As we can see, in 2003, nearly half of ponds (24 out of 53) did not have vegetation (red). Then more and more ponds without vegetation and adjacent to ponds with vegetation began to be colonized by mangrove year after year. In 2008, almost all ponds (45 out of 53) were colonized by mangrove (blue). This kind of patterns can thus be used to follow pond colonization by mangrove trees.
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	4.23 Forth sequential pattern ⟨ {WithoutActivity, WithVegetation}, {WithActivity, With-
	outVegetation} ⟩ (from 2009 to 2014). Red contours represent inactive pond
	with vegetation becomes active pond without vegetation in the next year. G:
	09/07/2009, H: 16/08/2010, I: 15/04/2011, J: 23/10/2012 K: 10/12/2013, L:
	26/03/2014

4.15 First sequential pattern ⟨ {WithActivity}, {WithoutActivity}, {WithoutActivity}, {WithoutActivity}, {WithoutActivity} ⟩ (from 2001 to 2008). Red contours represent active ponds which became inactive in the 4 consecutive years. A: 12/10/2001, B: 09/03/2002, C: 21/02/2003, D: 27/06/2003, E: 22/09/2007, F: 19/07/2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 4.16 4.20 Third sequential pattern ⟨ {WithoutActivity}, {WithoutActivity}, {WithoutActivity}, {WithActivity} ⟩ (from 2001 to 2008). Red contours represent inactive ponds remained inactive in the two consecutive years and then became active in the forth year. A: 12/10/2001, B: 09/03/2002, C: 21/02/2003, D: 27/06/2003, E: 22/09/2007, F: 19/07/2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.21 Third sequential pattern ⟨ {WithoutActivity}, {WithoutActivity}, {WithoutActivity}, {WithActivity} ⟩ (from 2009 to 2011). Red contours represent inactive ponds remained inactive in the two consecutive years and then became active in the forth year. G: 09/07/2009, H: 16/08/2010, I: 15/04/2011 . . . . . . . . . . . 4.22 Forth sequential pattern ⟨ {WithoutActivity, WithVegetation}, {WithActivity, With-outVegetation} ⟩ (from 2001 to 2008). Red contours represent inactive pond with vegetation becomes active pond without vegetation in the next year. A: 12/10/2001, B: 09/03/2002, C: 21/02/2003, D: 27/06/2003, E: 22/09/2007, F: 19/07/2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Mining recurrent patterns in a dynamic attributed graph

  As discussed in the state of the art, sequences and graphs become omnipresent models for analyzing data. Recently a richer model of graph, named a dynamic attributed graph, has received more attention. It can be used to model various real world datasets. For instance, an aquaculture dataset composed of satellite images time series can be modeled as a dynamic attributed graph. Vertices are objects (ponds) detected in the images, edges represent spatial relationships between objects and vertex attributes represent the characteristics such as presence of vegetation, activity, aerator etc in ponds. Another example is a social bookmarking system, where vertices represent users and edges describe mutual fan relationships. Users are characterized by bookmarks they shared for different categories(music, games, politics, etc.

  CandE, T, sol, Cand) 1 and G 2 , we calculate Ąrst the common sets of vertices CandV and the common set of edges CandE of C 1 and C 2

	10:	end if
	11:	end for
	12: end if

G

Table 3

 3 

		.1 Ű First recurrent pattern extracted from US Flight dataset
	Airport	First time step	Second time step
	Pittsburgh	Canceled+, Diverted=, Waiting-	Canceled=, Diverted-, Waiting-
		TimeArrival+	TimeDeparture=
	Portland	Canceled+, DelayDeparture+	DelayDeparture-,
			WaitingTimeDeparture-
	Bend/ Red-	Canceled=, Diverted=, Waiting-	Diverted=,	WaitingTimeDepar-
	mond	TimeDeparture=, WaitingTimeAr-	ture=	
		rival=		
	Raleigh/		DelayArrival-, WaitingTimeArrival-
	Durham			
	Richmond	Diverted=, DelayDeparture+	WaitingTimeDeparture=
	Roanoke	Diverted=, DelayDeparture+		
	Savannah	Canceled+, DelayArrival+		
	Louisville	Diverted=		
	San Diego		Diverted=	
	Shreveport	Diverted=	Diverted=, DelayDeparture-
	Providence	Canceled+, Diverted=, Waiting-	Diverted-,	WaitingTimeDepar-
		TimeDeparture+	ture=, WaitingTimeArrival-
	Reno		WaitingTimeDeparture=, Waiting-
			TimeArrival=	
	Rochester	Canceled+		

Table 4 .

 4 1 Ű The proportion of identiĄed and unidentiĄed aquaculture ponds

	Aquaculture ponds	RGT IUC EDB
	IdentiĄed ponds (unit)	835	1091 1295
	UnidentiĄed ponds (unit)	517	261	57
	Proportion of ponds identiĄed (%)	62	81	96
	Table 4.2 Ű Accuracy assessment for different methods
	Classification Overall Accuracy (%) Kappa coefficient
	RGT	65		0.3
	IUC	77		0.54
	EDB	84		0.68

Table 4 .

 4 13 Ű Third recurrent pattern (Fig.4.29). The Ąrst column represents vertices of the farm (a set of adjacent ponds), the following columns represent detailed attributes information of ponds in consecutive timestamps. It depicts an evolution of 8 ponds, where 7 out of 8 adjacent ponds (red) remained active over time while one pond (blue) of this group remained inactive. This recurrent pattern repeats three times

	Ponds	Attributes of ponds in	Attributes of ponds in	Attributes of ponds
		Ąrst image (timestamp)	second image (times-	in third image (times-
				tamp)		tamp)	
	Pond123	WithAcitivity,	With-	WithAcitivity,	With-	WithAcitivity,	With-
		Bridge, WithoutVege-	Bridge, WithoutVege-	outVegetation, With-
		tation, WithoutAerator	tation, WithoutAerator	outAerator	
	Pond130	WithAcitivity,	With-	WithAcitivity,	With-	WithAcitivity,	With-
		Bridge, WithoutVege-	Bridge, WithoutVege-	Bridge, WithoutVege-
		tation, WithoutAerator	tation, WithoutAerator	tation, WithoutAerator
	Pond136	WithAcitivity,	With-	WithAcitivity,	With-	WithAcitivity,	With-
		Bridge, WithoutVege-	Bridge, WithoutVege-	Bridge, WithoutVege-
		tation, WithoutAerator	tation, WithoutAerator	tation, WithoutAerator
	Pond159	WithoutWater, With-	WithoutWater, With-	WithoutWater, With-
		outActivity, Without-	outActivity, Without-	outActivity, Without-
		Bridge, WithoutAera-	Bridge, WithoutAera-	Bridge, WithoutAera-
		tor		tor		tor	
	Pond170	WithAcitivity,	With-	WithAcitivity,	With-	WithAcitivity,	With-
		Bridge, WithoutVege-	outVegetation, With-	Bridge, WithoutVege-
		tation, WithoutAerator	outAerator		tation, WithoutAerator
	Pond171	WithAcitivity,	With-	WithoutWater,		WithBridge,	With-
		Bridge, WithoutVege-	WithAcitivity,	With-	outVegetation, With-
		tation, WithoutAerator	Bridge, WithoutVege-	outAerator	
				tation			
	Pond178	WithAcitivity,	With-	WithAcitivity,	With-	WithAcitivity,	With-
		Bridge, WithoutVege-	outVegetation, With-	Bridge, WithoutVege-
		tation, WithoutAerator	outAerator		tation, WithoutAerator
	Pond182	WithAcitivity,	With-	WithAcitivity,	With-	WithAcitivity,	With-
		Bridge, WithoutVege-	outVegetation, With-	Bridge, WithoutVege-
		tation, WithoutAerator	outAerator		tation, WithoutAerator

Table 4 .

 4 14 Ű Forth recurrent pattern(Fig. 4.31). The Ąrst column represents vertices of the farm (a set of adjacent ponds), the following columns represent detailed attributes information of ponds in consecutive timestamps. It depicts an evolution of 6 adjacent ponds (6 inactive ponds became active in the next year) This recurrent pattern repeats two times

	Ponds	Attributes of ponds in Ąrst image	Attributes of ponds in second image
		(timestamp)		(timestamp)	
	Pond1753	WithoutWater,	WithoutActivity,	WithoutWater,	WithoutBridge,
		WithoutBridge, WithoutAerator	WithoutVegetation, WithoutAera-
				tor	
	Pond1762	WithoutWater,	WithoutActivity,	WithAcitivity, WithoutVegetation,
		WithoutBridge,	WithoutVegeta-	WithoutAerator	
		tion, WithoutAerator		
	Pond1763			WithAcitivity, WithoutVegetation,
				WithoutAerator	
	Pond1767	WithoutWater,	WithoutActivity,	WithoutWater,	WithAcitivity,
		WithoutBridge,	WithoutVegeta-	WithoutBridge,	WithoutVegeta-
		tion, WithoutAerator	tion, WithoutAerator
	Pond1768			WithAcitivity, WithoutVegetation,
				WithoutAerator	
	Pond1775	WithoutWater,	WithoutActivity,	WithoutWater, WithBridge, With-
		WithoutBridge, WithoutAerator	outVegetation, WithoutAerator
	Pond1785	WithoutWater,	WithoutActivity,	WithAcitivity, WithBridge, With-
		WithoutBridge,	WithoutVegeta-	outVegetation, WithoutAerator
		tion, WithoutAerator		
	Pond1786	WithoutActivity, WithoutBridge,	WithAcitivity, WithoutVegetation,
		WithoutVegetation, WithoutAera-	WithoutAerator	
		tor			

Table 4

 4 

	.15 gives details

Table 4 .

 4 15 Ű Fifth recurrent pattern(Fig. 4.33). The Ąrst column represents vertices of the farm (a set of adjacent ponds), the following columns represent detailed attributes information of ponds in consecutive timestamps. It depicts a set of 6 adjacent active ponds in the center region became inactive in the two following years This recurrent pattern repeats two times

	Ponds	Attributes of ponds in	Attributes of ponds in	Attributes of ponds
		Ąrst image (timestamp)	second image (times-	in third image (times-
				tamp)		tamp)
	Pond1165	WithWater, WithAci-	WithoutWater, With-	WithoutWater, With-
		tivity, WithoutVegeta-	outActivity,	With-	outActivity, Without-
		tion, WithoutAerator	outVegetation, With-	Bridge, WithoutVegeta-
				outAerator		tion, WithoutAerator
	Pond1167	WithAcitivity,	With-	WithoutWater, With-	WithoutWater, With-
		outVegetation, With-	outActivity,	With-	outActivity, Without-
		outAerator		Bridge, WithoutVege-	Bridge, WithoutVegeta-
				tation, WithoutAerator	tion, WithoutAerator
	Pond1205	WithoutVegetation,	WithoutWater, With-	WithoutWater, With-
		WithoutAerator		outActivity,	With-	outActivity, Without-
				outVegetation, With-	Bridge, WithoutVegeta-
				outAerator		tion, WithoutAerator
	Pond1221	WithWater, WithAci-	WithoutWater, With-	WithoutWater, With-
		tivity, WithoutVegeta-	outActivity,	With-	outActivity,	With-
		tion, WithoutAerator	outVegetation, With-	outVegetation, With-
				outAerator		outAerator
	Pond1224	WithoutVegetation,	WithoutWater, With-	WithoutWater, With-
		WithoutAerator		outActivity,	With-	outActivity, Without-
				outVegetation, With-	Bridge, WithoutVegeta-
				outAerator		tion, WithoutAerator
	Pond1245	WithWater, WithAci-	WithoutWater, With-	WithoutWater, With-
		tivity, WithoutVegeta-	outActivity,	With-	outActivity, Without-
		tion, WithoutAerator	outVegetation, With-	Bridge, WithoutVegeta-
				outAerator		tion, WithoutAerator
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Ąrstly from 2007 to 2008 and secondly from 2011 to 2012. This is because 2008 and 2012 were two drying periods in which farmers oxidize harmful chemical substances and eliminate undesirable species (e.g. sulĄdes). Table 4.12 shows details of this pattern.