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Abstract :

Digital holographic microscopy is an imaging process that encodes the 3D information of a sample into a
single 2D hologram. The holographic reconstruction that decodes the hologram is conventionally based
on the diffraction formula and involves various iterative steps in order to recover the lost phase information
of the hologram. In the past few years, the deep-learning-based model has shown great potential to
perform holographic reconstruction directly on a single hologram. However, preparing a large and high-
quality dataset to train the models remains a challenge, especially when the holographic reconstruction
images that serve as ground truth are difficult to obtain and can have a deteriorated quality due to various
interferences of the imaging device. A cycle generative adversarial network is first trained with unpaired
brightfield microscope images to restore the visual quality of the holographic reconstructions. The
enhanced holographic reconstructions then serve as ground truth for the supervised learning of a U-Net
that performs the holographic reconstruction on a single hologram. The proposed method was evaluated
on plankton images and could also be applied to achieve super-resolution or colorization of the
holographic reconstructions.
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1 INTRODUCTION

The hologram, which encodes the 3D information of a sample
into a single 2D image, is recorded on a camera and then digitally
processed to find the phase and amplitude of the objects. Since
all the image processing steps (e.g., focusing, segmentation) are
performed after the holograms acquisition and that the imaging
device can be compact [ 1], digital holography has gained grow-
ing interest in many fields of application such as 3D particle
tracking [2, 3], tomography [4, 5] or label-free cell analysis
[6]. However, the hologram, which is created by the superposi-
tion of an unaffected reference wave and the wave diffracted by
the object, must be numerically reconstructed before detecting,
counting or analysing the objects of interest.

The holographic reconstruction is composed of several steps
which depend on the holographic device architecture (in-line or
off-axis) and the type of imaging technique (static or dynamic)
but usually includes the focusing and the phase recovery of the
hologram. These two steps, which are iterative, require the
back-propagation of the hologram at several planes in order to
calculate certain metrics to search for the focus or to recover the
phase of the object.

To accelerate the processing of holograms, several studies have
been successfully carried out to perform the holographic recon-
struction directly from a single hologram using deep learning
models [7, 8, 6]. In practice, most of the proposed methods
have one point in common: the models are trained in a super-
vised setting to transform a raw or de-focused hologram (input)
into an amplitude and/or phase image of the object (output) [9].
For this type of learning, the preparation of a large, paired and
artifact-free dataset to train the models is challenging and re-
quires considerable human and technical efforts. Indeed, as the

model learns a mapping function between inputs examples and
the target images, its outputs on unseen data once trained will
have a visual quality and resolution at best similar to that of
the target images in the training dataset. As a result, acquiring
high-quality target images is often a prerequisite to obtain a
robust and efficient model.

To obtain clean and high-quality target images, the first strategy
consists in improving the acquisition process of the holograms
(multi-height phase recovery [10], super-resolution [11], ...)
and/or in optimizing the holographic device (smaller pixel size,
increased coherence of the light source,...). However, theses
approaches, which further complicate the acquisition and pro-
cessing of holograms, do not always guarantee the good quality
of the reconstructed images, which can be out-of-focus, noisy
or can be deteriorated by interference fringes that are difficult to
compensate (twin image or out-of-focus objets for e.g.).

To overcome the difficulty of obtaining a clean dataset to train
a model, some recent methods rely on the use of a generative
adversarial network (GAN). In [12], brightfield microscopy im-
ages are used as ground-truth and a GAN learns to transform a
hologram into a brightfield-like image. However, a paired and
aligned dataset is needed, which requires a great effort of co-
registration between the holograms and the corresponding bright-
field images that are acquired with two different microscopy
imaging modalities. In [13], a CycleGAN [14] is trained with
unpaired images to transform a hologram into a phase image.
This scenario is particular because the holograms are generated
by a spatial light modulator (2D sample) and the distribution of
the target images are known beforehand. More recently, [15]
demonstrated that it is possible to transform a hologram into
brightfield-like images by training a CycleGAN with unpaired
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data but the generator tends to output brightfield-like objects
with random focal representation.

These recent works have demonstrated that the use of a GAN
can overcome the problem of low-quality reference images or
even the absence of the latter. By using images acquired by
another imaging modalities or during a previous experiment,
it is possible to considerably improve the visual quality of the
images reconstructed by deep learning models. However, an
important limitation of GANs, and particularly of CycleGAN,
is that the model learns one-to-one mappings, i.e. the model
associates each input image with a single output image. Applied
to images that encode 3D information, such as a hologram or
a CT scan, CycleGAN can generate slice-to-slice inconsisten-
cies [16] or random focal representations [15]. In the case of
holography, it is desirable to have a model that learns many-
to-one mappings as multiple defocused holograms of the same
region of interest (ROI) would still correspond to the same re-
constructed image. Another limitation of GANs is their number
of parameters, which can be substantial and make inference
computationally expensive and memory-intensive. As a results,
it can be complicated to deploy it on low-power edge devices.

In this paper, we propose a novel approach that aim to solve the
problem of random focal representation and that can be used to
obtain a small model with an optimized structure for edge com-
puting. Unlike the previously mentioned methods, we propose to
train 2 models in a Teacher-Student setting, which together are
able to learn many-to-one mappings between two microscopy
imaging modalities. The first model, a CycleGAN, is the Teacher
model and learns one-to-one mappings between unpaired holo-
graphic reconstructed images and brightfield microscopy images.
Once trained, the Teacher model translates the high-noise and
low-resolution holographic reconstructed images into low-noise
and high-contrast brightfield-like images that are used as target
images to guide the second model training. The Student model,
a small Unet, is trained with paired data (holograms/brightfield-
like images) that includes several defocused holograms paired
up with the same target image (many-to-one mapping) provided
by the Teacher model. Our framework is demonstrated exper-
imentally using a species of diatom that was imaged with a
lensless holographic device and a bright-field microscope. The
results show that our method, which takes advantage of unpaired
images from another microscopy modality, allows to obtain
holographic reconstructed images of better quality than those
obtained with a model that is trained in a directly supervised
way with an aligned dataset. Moreover, the final Student model
trained with our framework has fewer parameters than the Cy-
cleGAN and is robust in its holographic reconstruction. The
output images are not compromised by distortion or artifacts
unlike those that could be obtained with the CycleGAN and the
model is able to perform many-to-one mappings which solves
the problem of random focal representation.

2 METHODS

2.1 Holography principle

The principle of holography is based on the recording of the
fringe pattern resulting from the superposition and the inter-
ference of two light waves. Mathematically, these two waves,
often referred to as reference R and object O, are expressed

respectively by:
R(X,Y) = Ap(X, Y)e D W
O(X,Y) = Ap(X, Y)e oY) )
where A(X, Y) and ¢(X, Y) are the amplitude and phase distribu-
tions, respectively. At the imaging plane, where a CCD camera

can be positioned and which is placed at a distance d from the
object to be observed, the hologram H is expressed by:

HyX.Y) = RX,Y) + OX, Y)I*
= |R]> + |O* + RO* + OR*

where * represents the complex conjugate. The holographic
reconstruction, which aims to recover the original object from
its hologram, is often composed of two steps. The first step is
the autofocusing during which the object-sensor distance d is
searched. This step often requires several back-propagation of
the hologram at different planes in which different sharpness
criteria can be calculated on the resulting complex-valued im-
age (Gini Index [17], Tamura Coeflicient [ 18], AMP [19], SoG
[20]....). The second step is the phase recovery which consists
in the reconstruction of the phase distribution of the wavefront
at the imaging plane. This iterative step is often based on the
Gerchberg-Saxton algorithm [21] and requires the acquisition
of several holograms of the same object with, for example, dif-
ferent wavelengths [22], different object-sensor distances [10]
or different angles [23].

3)

Although digital holography offers several advantages over other
microscopy imaging modalities (such as a wide field-of-view
[24] or a the possibility to obtain a compact imaging device
[25, 26]), the relatively complex imaging set-ups and algorithms
that are required to perform the holographic reconstruction have
limited its suitability for many applications. Even-though many
deep-learning based-methods have emerged to simplify the holo-
graphic image reconstruction steps, the constitution of an aligned
and artifact-free dataset to train those models remains a chal-
lenge, especially when the reconstructed images are hard to
acquire and can have a deteriorated quality.

Several factors will impact the overall quality of the holographic
reconstructed images. The first ones are related to physical
constraints and mainly depends on the configuration and param-
eters of the holographic device. For example, the spatial and
temporal coherence of the light source, the absence of lens and
the pixel size of the camera limit the final contrast and resolu-
tion of the images [27]. The others factors are related to the
algorithms used to process the holograms (autofocusing, phase
recovery routine or co-registration) whose performances and ro-
bustness may depend on the nature of the object to be observed
[20] (amplitude-contrast object, phase-contrast object, sparse or
dense sample,...) and the execution mode (automatic or super-
vised by expert). Motivated by the fact that it is cumbersome
and not always feasible to obtain a large and high quality holo-
graphic dataset, we propose to use images acquired by another
microscopic modality which already have the desired properties
in term of contrast or resolution and that might be easier to
acquire and process.

2.2 Proposal of a new method

The objective of our study is to obtain a small model that is able
perform the image reconstruction from a single hologram. The
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Figure 1: General diagram of our 2-step method. A CycleGAN is
ground-truth to train a second model.

output of the trained model should be similar to the reconstructed
in-focus amplitude images obtained after a conventional phase
retrieval/auto-focusing algorithms but must have a better visual
quality, with notably less noise and more contrast. However,
this task is not feasible if the training of the model is carried out
in a supervised setting with a paired holograms/reconstructed
images dataset that has low quality images as ground-truth im-
ages. To improve the quality of the holographic reconstructed
images without complicating the experimental setup to acquire
holograms, we propose to use microscopic images acquired by
another imaging modality which already possess certain desired
properties in terms of resolution, contrast and noise reduction.
Our method, depicted in Fig. 1, is composed of two steps. The
first one aims at enhancing the visual quality of the holographic
reconstructed images which will then serve as ground-truth to
train a second and smaller model in a supervised way. For this
step, a cycle generative adversarial network [14] (CycleGAN) is
trained with unpaired brightfield microscopy images (domain
A) and holographic reconstructed images (domain B) obtained
by a conventional phase retrieval algorithm to remove the twin
image artifact.

The CycleGAN is composed of two generators that translate the

trained to generate bright-field like images that are then used as

images from one domain to another and two discriminators that
determine if the generated images are structurally identical to
the true images of domains A and B. The 4 models are trained
simultaneously in a minimax game and learn 2 mapping func-
tions between domains A and B. One generator G4 : A — B
learns to translate an image a € A into a fake image G4(a) that
fool a discriminator D4. The discriminator goal is to determine
if the image G4(a) is a true image from domain B or a generated
one. This opposite objective is expressed by the adversarial loss
that is used to match the distribution of generated images to the
data distribution in the target domain :

Lcan(Ga, Dy, A, B) = Ep[log D4 ()]

+Eflog(l - DsGa@)]

Similarly, the second generator Gp : B — A learns to translate
an image b € B into a synthetic image Gp(b) that is similar to
the images from target domain A and fools the discriminator Dp.
During training, the cycle consistency loss is minimize to ensure
that any input image and output image (generated) are paired
up in a meaningful way by reducing the number of possible
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mappings between domains A and B:
Leye(Ga, Gp) = EolllGp(Gal@)) — alli]

5
+ EIGAG(b) — bl ©)
Finally, the full loss can be written as :
L(G4,Gp, Dy, Dp) = Lan(Ga, Dy, A, B)
+ Lcan(Gp, D, B, A) (6)

+ /lLL'yc(GA > GB )

where A controls the relative importance of the two objectives.
The CycleGAN is trained to solve :

G,.Gy = argGmin max L(Ga,Gg, D4, Dp)

2.Gp Da,Dp )
At the end of the first step of our method, the degraded holo-
graphic reconstructed images are transformed into better quality
images Gp(b) that should have similar characteristics to bright-
field microscopy images (domain A). Note that the second Cy-
cleGAN generator G4, which translates the bright-field images
into a fake holographic reconstructed image, is not used for the
remainder of our framework.

The second step of our method consists in the supervised learn-
ing of a small Student model that performs the image reconstruc-
tion from a single hologram. To train the model, we build a new
dataset in which the fake brightfield images generated by the
CycleGAN generator G serve as ground truth. Note that even
though the CycleGAN is trained with unpaired images (i.e. the
images from domains A and B are independently acquired by
two different microscopy modalities on distinct samples), the
generated bright-field like images G(b) are aligned with the
reconstructed image b. Since b are already aligned with their
corresponding holograms, the resulting paired hologram/fake
bright-field images dataset is perfectly aligned without the need
to perform a co-registration step. During the second model train-
ing, the raw holograms are first back-propagated close to focus
plane and the amplitude images are used as inputs. This step
is performed for two reasons. First, it allows to increase the
number of images in the dataset by coupling it with a classi-
cal data augmentation routine (random cropping, rotation, flip).
More precisely, a single raw hologram can be back-propagated
to an infinite number of planes to generate defocused holograms.
We chose to randomly back-propagated every raw hologram
at 30 different planes within +£100 um from the correct global
focus plane. Secondly, we used defocused holograms as inputs
to ensure that the trained model is robust in its holographic
reconstruction regardless of the axial defocus distance (many-
to-one mappings). At the end of step 2, the trained Student
model should be able to transform a defocused hologram into a
enhanced and segmented amplitude image.

2.3  Models Architecture
2.3.1 CycleGAN for step 1

The CycleGAN is composed of two generators and two discrimi-
nators. Both generators have the same U-Net [28] structure. The
first part of the generator, the encoder, is composed of 7 convo-
lutional layers with a kernel size of 4 and a stride of 2. Each
convolution layer is followed by a leaky-ReLu activation func-
tion and a batch normalization. The number of filters for each

convolution layer is {64,128,256,512,512,512}. The second part
of the U-Net, the decoder, is composed of 7 transposed convolu-
tional layers with a kernels size of 4, a stride of 2 and a number
of filters set to {512,512,512,256,128,64,3}. Skip connections
are added after each transposed convolutional layer in order to
concatenate the feature maps of the decoder part with those of
the encoder. The ReLu activation function is used in the decoder
part. The two discriminators have a patchGAN [29] structure
and are composed of 5 convolutional layers with a number of
filters set to {64,128,256,512,1}, a stride of {2,2,2,2,1,1} and a
kernel of size 4. The leaky-ReLu activation function is used for
all convolutions except the last one which is linear.

2.3.2  U-net for step 2

For the second step of our method, we trained a Student Unet-
like model that has fewer parameters than the CycleGAN gen-
erator (4M VS 41.8 M) and has a slightly different architecture.
The model is composed of 4 convolutional blocks and 4 trans-
posed convolutional blocks in its encoder and decoder parts,
respectively. Each block consists of 3 convolution layers (resp.
transpose convolution) followed by a normalization batch layer
and the ReLu activation function. The first two convolutional
(resp. deconvolutional) layers in each block have the same num-
ber of filters and the last one doubles (resp. halves) the number
of feature maps. The downsampling and upsampling in the
endoder and decoder are provided by a Maxpooling and Up-
sampling layer, respectively. The skip connections between the
encoder and decoder parts are Add layers that sum the feature
maps instead of concatenating them. The last convolution layer
is activated with a sigmoid so that the output images have pix-
els values between 0 and 1. The Unet-like model is trained to
minimized the binary cross-entropy loss which is expressed as :

N
1
Loce =~ Z. vilog(p) + (1 =y)log(1=p)  (8)
where N represents the total number of images, y is the reference
image and p is the predicted image.

2.4 Data acquisition and preparation

To evaluate our method, we imaged a plankton species from
New Caledonia (Pleurosigma sp.) with a brightfield microscope
and a holographic device. All the images were acquired indepen-
dently on different samples. The plankton was imaged with a
brightfield microscope at a X10 magnification. The images were
automatically segmented with a Sobel-based edge detection al-
gorithm and converted into grayscale images. The images have
been resized so that the effective size of the pixels is identical
to that of the holograms. The holograms were acquired with an
experimental digital in-line holographic microscopy setup. Our
lensfree system is composed of a green LED (520nm) that is cou-
pled to a 100um pinhole to increase its spatial coherence. The
plankton sample is placed at approximately 10 cm away from the
partially coherent light source and < 1mm away from the camera
(IMX219). Since the sample is close to the sensor surface of
the camera, the imaging field-of-view is equivalent to the sensor
area (~ 10mm?) and the holograms are acquired with unit optical
magnification. Note that the student network only uses the fake
brightfield images generated by the CycleGAN as ground-truth
during training. As a result, the input images (B-domain) used
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Figure 2: Generator G encoded the background information
of TrueB inside the object support of FakeA so that G4 can
recover the background. The arrows indicates where the white
square was added prior to inference.

to train the CycleGAN and the Unet can be a different repre-
sentation of the holographic images (raw or in-focus/defocused
backpropagated hologram for example). We conducted prelimi-
nary studies (that can be found in the Supplementary Document)
and trained several CycleGANs with different B-domain images
to find the one that outputs the most realistic fake brightfield
images. We found that CycleGANs trained with backpropa-
gated (infocus or defocused) holograms have a unstable training
(Fig.S1) and tend to produce images with artifacts due to the
cycle consistency that is enforced at the pixel level (Fig.S2). For
the hologram — brightfield image translation, the background
information around the objects and in particular the twin image
and noise must be encoded in the fake bright field image to
ensure the cycle consistency. However, since the fake brightfield
images are segmented, the background information is somehow
encoded in the pixels inside the object support which cause un-
realistic artifacts (see Fig.2 where a trained G encodes a white
square that we added in the background). To correct this flaw,
we chose to carry out a phase recovery routine on the holograms
before backpropagated them at the correct focal plane and seg-
menting them to retain only the amplitude image of the plankton.
This process ensure that there is no background information
in the B-images and that the images are in-focused. To carry
out the recovery phase, we acquired 2 holograms of the same
sample by changing the object/camera distance (by adding a cov-
erslip between the sample and the camera). The holograms are
then processed as follows: First, the two holograms of the same
sample were backpropagated to their respective focus plane that
was automatically determined with the calculation of the Gini
Index. Then, an affine transformation was build to co-registered
the two holograms. Indeed, during the holograms acquisition
of different heights, lateral shifts and rotations are unavoidable
because the placement of the sample after changing the height
is not exactly the same. This step, which is essential before the
phase recovery, was carried out by an automatic algorithm (Surf
[30]) that determines common control points in the holograms
before calculating the affine transformation to compensate for
the deformations. Finally, the dual-planes phase recovery is
performed using an iterative Gerchberg—Saxton based algorithm
[31]. The method starts from the first intensity measurement
(ie hologram #1 denoted H;) and assumes a complex wavefront
E, = VH, exp i¢p; where the phase distribution ¢, is initialized
to zero. The wavefront is then numerically propagated to the
other hologram plane to obtain the complex wavefront there
as E, = Ayexpig,. Then, the amplitude is replaced by the

second intensity measurement (i.e. hologram #2 denoted H;)
A, = \H, while the phase distribution remains unchanged. The
updated wavefront E is then numerically backpropaged to the
first hologram plane where the amplitude is again replaced by
the intensity measurement and the phase is retained. The algo-
rithm continues to numerically propagate the complex wavefront
back and forth among the two heights until the mean squared
error between |E;|* and H, is smaller than a set threshold. Once
the process terminates, the phase of each lensfree hologram is
recovered and the first hologram is backpropagated to the object
plane. The amplitude images of the objects are then segmented
to remove the background and the detected regions of interest
are saved to constitute B-domain image for the CycleGAN.

2.5 Evaluation metrics

Several metrics are used to evaluate the performance of the
models.

To evaluate the CycleGAN outputs on unpaired data, the Frechet
Inception Distance (FID) was used. This metric, proposed by
[32] was specially developed to evaluate the performances of
generative adversarial networks. Since GANs are composed of
several networks that are playing against each other in a zero-
sum game, the generators must be evaluated during training to
identify the best epoch at which the synthesized images coming
from the generators are the most similar to the real images from
the data distributions. The FID score uses statistics on feature
vectors generated by a Inception V3 model trained on ImageNet

FID(r, 8) = lIm, = mgl; + Tr[C, + Cg = 2(C,Co)]  (9)
where (m,,C,) and (mg, Cy) are the mean and covariance of
the real data and generated data distributions, respectively. A
smaller FID score indicates that the distribution of the generated
images is similar to the distribution of real images that were
used to train the model.

To evaluate the Unet-like model that performs the holographic
image reconstruction form a single hologram, we used the mea-
sure of enhancement (EME) [33] and a perceptual blurness
metric [34].

The EME is a no-reference image quality assessment metric and
is expressed as :
1 ki k Ii,j
EME(x) = — 20In ===
kika ; Z:‘ I
=1 j= min

(10)

where the image is divided in k&, blocks and where I,’;;{n and
I,;).. are the minimum and maximum pixels values in each block

of the input image x. A higher EME score indicates better
perceptual quality.

The no-reference blur metric proposed by [34] compares the
intensity variations of the neighboring pixels between the image
to be evaluated and the same image blurred with a low-pass filter.
The blur estimation score ranges from O to 1 and a smaller score
indicates better quality in term of blur perception.

We also used the well-known SSIM score [35], which is a full
reference image quality metric:

(zlur,ue + Cl )(zo—re + C2)
W2+ 212+ Ci) o2+ 02+ ()

SSIM(r,e) = (11
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where u,,u., 0,0, and o, are the local means, standard devia-
tions, and cross-covariance for images r and e.

3 REesuLrs

3.1 CycleGan

The CycleGAN was trained for 200 epochs with a training
dataset consisting of 800 segmented brightfield microscopy im-
ages (domain A) and 600 holographic reconstructed images
(domain B). The image size in both domains is 128x128 pixels
and a batch size of 1 is used. During training, the images are
randomly cropped and data augmented (rotations and flips) be-
fore being used as inputs. Every 5 epochs, the generators and
discriminators are saved. To evaluate the performance of the
CycleGAN during training and to determine at which epoch the
generated brightfield-like images are most similar to the true
brightfield images, the Frechet Inception Distance (FID) score
was calculated. The best FID score (53) was obtained at epoch
95 of the training (see Fig.S1) and the model at this epoch was
used to transform the real holographic reconstructed images into
fake brightfield images. Fig. 3 shows examples of generated
brightfield images. The generator outputs are characterized by
sharper edges, less noise and an increased contrast.

r A
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Figure 3: CycleGAN outputs. First row: inputs (real holographic
reconstructed images). Second row: corresponding outputs (fake
brightfield images). Scale bar is 50um.

At this stage, which corresponds to the end of step 1 of our
method, we show that it is possible to transform a real holo-
graphic reconstructed image into a fake brightfield image using
a generative model trained with unpaired data. Although the gen-
erator is able to enhance the image and even restores/hallucinates
some details of the plankton (chloroplasts for e.g.), it should be
noted that not all the images are perfectly translated by the gen-
erator. Indeed, some generated images can have some important
deformations and distortions that can occur if the input images
are not correctly segmented or possess multiple reflection in-
terference. Although these distorted images will be found in
the dataset (as ground-truth) of step 2, supervised learning cou-
pled with a high batch size allows to limit the possible negative
impact of these images on the training.

3.2 New enhanced dataset

Once the CycleGAN was trained, the real holographic recon-
structed images were transformed into fake bright-field mi-
croscopy images using the Gp generator. Fig. 4 presents a
sample of the new dataset.

Figure 4: New dataset. a) defocused hologram, b) dual-plane
phase recovered amplitude image and c) enhanced fake bright-
field image generated from image b) by the CycleGAN. Scale
bar is 50um.

With this new aligned dataset (hologram / real reconstruction/
fake brightfield image), two Unet-like models are trained in a
supervised setting to perform the segmented holographic im-
age reconstruction from a single hologram. The first model
(holo — rec), whose results will serve as a baseline, is trained
with the dataset hologram / real reconstruction. Its performances
correspond to the case where the CycleGAN would not have
been used beforehand to enhance the visual quality of the holo-
graphic reconstructed images. The second model (holo — fake)
is trained with the dataset hologram / fake brightfield image.
Both models were trained under the same conditions during
100 epochs with the same hyperparameters (batch size of 16,
learning rate of 0.00015, Adam optimizer) and with the same
defocused holograms as inputs (80% of the dataset).

The Fig. 5 shows examples of predictions of the two models on
test holograms. The outputs of the model trained with the data
hologram / fake brightfield image have a better visual quality
than the outputs of the baseline model with notably less blur
and noise. The background subtraction is also more efficient
and the segmentation of the object is sharper. Fig. 6 displays
an example of the 2 models outputs for the same input and their
corresponding gradient magnitude images from Sobel operators.
It is clear that the holo — fake model is able to produce an
image with sharper edges and restored details (chloroplasts).

To further evaluate and compare the models performances, we
computed the EME and Blurness metrics in a pairwise man-
ner: for every hologram in the testing dataset, we computed the
scores on the outputs of the baseline model (holo — rec) and
the final model (holo — fake), respectively. The mean scores
evaluated from 100 test holograms are summarized in Table 1
and indicate that the holographic reconstructed images generated
by the holo — fake model are characterized by less blur and
an increased contrast, which is consistent with the qualitative
comparison reported in Fig. 5. We also report the image quality
assessment metrics of the holographic reconstructed images that
were obtained with a dual-plane phase recovery routine on the
test holograms. The results confirmed that the outputs of the
holo — rec model have a much lower quality than the holo-
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Figure 5: Models comparison on a test hologram (left image). The hologram is first backpropagated near the global focus plane
and the models perform the holographic reconstruction on small regions of interest (a,b,c,d). First column (right images) : models
input, second and third columns : corresponding outputs of holo — rec and holo — fake models, respectively. Black scale bar is

50um.

Figure 6: Sobel edges images. Images a) and c) are the outputs
of the holo — fake and holo — rec models, respectively. Im-
ages b) and d) are the corresponding absolute magnitude of the
gradient (Sobel operators).

graphic reconstructions obtained by dual-plane phase recovery.
This is explained by the fact that for supervised learning, the
quality of the outputs of the trained model is limited by the
quality of the ground-truth images during training and that it
cannot be miraculously better. While holo — fake model is
also trained in a supervised setting, the ground-truth images are
brightfield-like images that are, in a way, a better and enhanced
version of the holographic reconstructed images. As a result,
the model is able to generate images of higher quality than the
images reconstructed by dual-plane phase recovery.

Table 1: Outputs scores evaluated on 100 test holograms

Images Blurness | | EME 7

holo — rec (baseline) outputs 0.5429 2.6829
phase recovered amplitude image 0.4179 3.2050
holo — fake outputs 0.3894 3.3702

3.3 Model prediction on de-focused holograms

During the training of the Student (holo — fake) model, the raw
holograms were randomly backpropagated close to the correct
focus plane in order to (1) increase the number of images in
the dataset and (2) obtain a model which is robust to various
defocus distances. This aspect is an important element to study
because in order to speed up the holographic reconstruction it
is possible to backpropagate once the full hologram (FOV of
10mm?®) before performing the holographic reconstruction with
the model on small ROIs. Since the different plankton within
the FOV do not have exactly the same object-camera distance,
the ROIs will have different defocus variations. Moreover, the
model should be able to produce the same output for a given ROI
regardless of the axial defocus distance. Fig. 7 shows examples
of model predictions for different defocused holograms of the
same ROI (backpropagated to a plane that is placed 0,+15um
and +30um away from the correct global focus plane). We can
see that the model outputs are very similar to each other, even
when the defocus distance is large. To evaluated the model con-
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sistency for various defocused holograms, we have calculated
the SSIM index across an axial defocus range of -30 um and 30
um, which was averaged over 100 test ROIs. The results, which
are displayed in Fig. 8, show that the SSIM index between the
model output of a in-focus hologram and the model output of the
same but de-focused hologram is greater than 0.98, suggesting
that the difference is visually negligible. Hence, the model is
able to produce the same reconstructed image for multiple defo-
cused holograms of the same ROI and has learned many-to-one
mappings.

Inputs

Ouputs

Figure 7: holo — fake outputs for different degree of defocus.
a) Inplane hologram, b) 15um defocused hologram , c¢) 30um
defocused hologram.
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Figure 8: SSIM index value as a function of the axial defocus
distance. The reference image for the calculation is considered to
be the model output of the in-plane hologram for each ROI. The
SSIM curve is averaged over 100 test ROIs (128x128 pixels).

3.4 Model restoration performances

To further evaluate the CycleGAN and the Unet, we measured
a set of the same samples under a brightfield microscope and
a holographic device. The image registration between the two
imaging modalities was manually performed using the imagelJ
plugin TrackEM2. A visual comparison can be found Fig.9
where the predicted images (CycleGAN and Student model)
are compared to the references images in the brightfield and

holographic domains, respectively. The mean SSIM, MSE and
FID scores on 20 paired images are reported in Table 2. One
can notice that the holo — fake outputs look much more like
true holographic reconstructed (domain B) images than real
brightfield microscopy images (domain A), and this despite the
fact that the Student model was trained on synthetic brightfield-
like images provided by the CycleGAN. Indeed, the images
predicted by the Unet obtain a SSIM/FID scores of 0.911/26.4
with the reference images of domain B against a SSIM/FID
scores of 0.844/60.5 with the reference images of domain A.
The Unet output seems de-noised compared to the true recon-
structed image and that some details are restored but globally
the object is not misrepresented and the Unet does not hallu-
cinate too much features as a GAN could do. This result was
expected because the Unet is trained with a standard supervised
learning setting and therefore, has to minimize its loss per batch
on the entire training dataset which reduces its hallucination
capacities. However, training a Unet in a supervised setting
with the images generated by the CycleGAN as ground-truth
has many advantages. First, even though the CycleGAN is able
to generate images that look like brightfield images (FID of 49
on the test paired data), it is not capable of many-to-one map-
pings and some of its outputs may have significant distortions
when the input images are not correctly segmented or if they
already possess significant interference (twin-image artifacts,
cross-interference between objects). The Unet model, although
trained on the images generated by the CycleGAN, does not
output images that display these deformations or artifacts as the
supervised setting during training tends to "smooth" the possi-
ble solutions. Moreover, the Unet is trained with a multitude
of input images that display different noise level, interference
and contrast. As a result, the domain shift between the training
dataset and new/unseen holograms is limited and the model is
more robust.

Table 2: CycleGAN and Unet evaluation on 20 paired.

Reference Scores | CycleGan | Unet
Image (Fake A)
True Bright-field | MSE 0.0130 0.0105
(True A) SSIM 0.833 0.844
FID 49.98 60.46
True amplitude MSE 0.0047 0.0035
(True B) SSIM 0.895 0.911
FID 55.05 26.43

Secondly, CycleGANs are known to be complicated to train
due to the minimax game and they generally possess a large
number of layers and parameters that may be oversized for the
task at hand. However, once trained, the CycleGAN can be
seen as a preprocessing step that are apply to the holographic
reconstructed images to produce new enhanced ground-truth
images to guide the training of a smaller model. Once the
synthetic images are generated and the new dataset is constituted
(which is a one-time effort), it is possible to train and optimize
the structure of the Unet over several runs. Indeed, since the
Unet is trained with paired data, it is also more prone to converge
than the CycleGAN and therefore, it is also easier to optimize
its structure (number of layers, number of filters, etc.) to the
requested task.

Finally, since the CycleGAN in our method can be considered
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as a pre-processing step, it is possible to incorporate various
additional image processing operations. As the objective is to
transform the holographic reconstructed image (domain B) into
a synthetic brightfield image (domain A), it is possible to pro-
cess the images of domain A as desired before the CycleGAN
training. For example, in this paper, we have segmented and
converted in grayscale the images of domain A. As a result, the
Student model will output a grayscale and segmented recon-
structed image. Our method could be applied for other computer
vision tasks, for example colorization (grayscale hologram —
colored image) or super-resolution (LR hologram — HR image),
which will be simplified because all the image processing steps
are applied on the brightfield images before the CycleGAN train-
ing and not on holograms, which are more difficult to acquire
and process. However, it is important to note that the domains
A et B must share a similar pixel-level structure to ensure that
the CycleGAN outputs consistent images. For example, a Cycle-
GAN can transform an image of a zebra into an image of a horse
but tends to fail to translate an image A into an image B when
the domain shift is significant (for e.g. cat and dog) [36]. Since
the brightfield images (domain A) are used because they already
have the desired perceptual features (contrast, resolution,...), it
is necessary to adapt the images of domain B so that they are
structurally similar to the images of domain A. In particular,
raw holograms that exhibit interference patterns are far from
having pixel-level similarity with brightfield images, and must,
therefore be reconstructed in their respective focus plane before
constituting B-domain images.

Even if the Unet hallucinates fewer features than the CycleGAN,
it is important to remember that the task of the two models is not
the same. The CycleGAN learns one-to-one mappings between
in-focus phase recovered images and brightfield microscopy im-
ages, whereas the Unet learns many-to-one mappings between
raw defocused holograms and enhanced reconstructed images.
The prior use of CycleGan can, in a way, correct the holographic
reconstructed images before they are used as target images. In
particular, The generator Gy allows to de-noise them and to re-
cover the characteristic features of the object (e.g. chloroplasts)
which appear poorly on the reconstructed images but are clearly
visible on the brightfield images.

4 CONCLUSIONS

In this paper, we propose a novel Teacher-Student approach to
improve the visual quality of holographic reconstructions per-
formed by deep learning from a single hologram. The method
relies on the use of images acquired by other imaging methods,
which reduces the negative impact that degraded holographic
reconstructed images could have if they were used as target im-
ages in a classical supervised learning setting. A Teacher model,
a CycleGAN, is first trained with unpaired images to transform
holographic reconstruction images into synthetic brightfield mi-
croscopy images. These generated images, which have similar
features to brightfield images in term of contrast, noise or res-
olution, are then used as target images in supervised learning
of a second (Student) model that has fewer parameters than
the Teacher model and can be optimized to be deployed into
edge devices. Our experiments conducted on sparse samples
(plankton images) have shown that the images reconstructed by
our method have a better visual quality than those obtained by a

classical holographic image reconstruction technique (dual-plan
phase recovery) or those obtained by a trained model without
the prior use of CycleGAN. Our method allows to restore and
improve the quality of the images without hallucinating fea-
tures. We have also demonstrated that the model has learned
many-to-one mappings, which ensures that different defocused
holograms of the same object give the same reconstructed image
and that the model does not output random focal representa-
tion. Our method based on the use of unpaired images limits
the complexity of the holographic device or holographic image
reconstruction algorithms and has a great potential for other
computer vision tasks in other coherent imaging fields, such
as super-resolution or colorization. In future work, we attend
to instigate the generality of the proposed approach on others
objects and in particular dense samples.
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