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ABSTRACT

An adaptive three-dimensional Kalman filter for the tracking of maneuvering targets in three dimensions is proposed. In
the radar industry, numerous trackers are based on a constant velocity model, with a process noise covariance matrix Q which
is adapted in real time to enhance tracking: it is kept at moderate values during straight lines where the constant velocity
assumption applies and is increased during maneuvers. In the present paper we advocate a novel method to increase Q during
maneuvers (and hence the Kalman gains) based on a recurrent neural network (RNN). The difficulty and the interest of our
approach lies in the fact the neural network is trained together with the filter, by backpropagation through the filter, and hence
learns the covariance matrix such as to directly maximize the accuracy of the final output.

Index Terms— Recurrent Neural Network (RNN), Kalman Filter, Radar Tracking

1. INTRODUCTION

The Kalman filter (KF) has long been used as an estimator for target tracking in radar applications. However, as the motion of
the target is unknown, the Kalman filter has to assume a dynamical model, and radar measurements allow the filter to correct
the estimated state. As the motion of the target is unpredictable, a simple yet sensible assumption is that the velocity vector is
constant. The process noise covariance matrix Q of the Kalman filter is an indication of discrepancy between the actual motion
and the model, which informs the filter how relevant the model is. It is a parameter that must be tuned by the user. Figure 1
illustrates the corresponding trade-off: if Q is set low the filter trusts the model and thus obtains good performance when actual
velocity is close to being constant but degrades when maneuvers are performed, whereas setting Q at a higher value makes the
filter trust more the radar measurements, which is relevant during maneuvers but leads to degraded performances in straight
lines. It is hence quite natural to adapt Q so as to increase it during turns while keeping it moderate during constant speed
flight. Such adaptation can be traced back to the work of Castella [1]. The method consists in evaluating the tracking residuals
in each coordinate, which are a measure of filter performance and suitability to the model, and to increase Q when they exceed
a threshold. Due to its simplicity of implementation, its robustness, and its relevance to the tracking of many targets such as
airliners, the method is still very lively within the radar industry1.

In this paper, building upon the recent advances of deep learning, we propose to use a RNN to dynamically adapt the process
noise of a constant velocity Kalman filter, which we called a Neural Network Adapted Kalman Filter (NNAKF). Our approach
is the first to our knowledge to use RNN to precisely learn what the adaptation should be in adaptive Kalman filtering for target
tracking. Moreover, at a technical level, the NN is trained with the KF in the loop. This is difficult because all the KF operations
based on a Riccati equation need to be part of a complex Recurrent NN for which training can be easily unstable. This should
be put in contrast with approaches where a NN increases Q directly based on the observations only, as in e.g., [2].

1.1. Literature Review and Paper’s Organization

For mono-target radar tracking, the Kalman filter and its variants [3, 4, 5, 6, 7] have long been brought to bear. As the actual
underlying dynamical of the target is never known to the radar tracker, most approaches involving Kalman filters revolve

1As far as we can tell from our experience within the radar industry.
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Fig. 1. Two-dimensional example of filtering using a Kalman filter with a Constant Speed model and two different settings of
the noise process. Blue line is the real trajectory, orange dots are the detections provided to the filter, and red crosses and lines
represent (respectively) the estimated states and the estimated velocity vectors.

around dynamically adapting the uncertainty parameters as in [1], or using multiple dynamical models with weights that are
dynamically adapted, as in the Interacting Multiple Models [8] (IMM), which is deemed state of the art.

On the other hand, machine learning algorithms outperform standard methods in many fields. Since the operations compos-
ing the KF are differentiable, modern gradient-based optimization algorithms such as ADAM [9], RMSprop [10] or Adadelta [11]
can be used to set the filters parameters to fit a given set of trajectories. As stated by Krishnan et al. [12] in 2015, and Chin [13]
before them, it is also possible to incorporate Neural Networks (NN) into a KF to make it applicable on a wide range of prob-
lems. For instance in 2016 Haarnoja et al. [14] proposed a deep learning preprocessing to make the filter work with images as
input. In 2017 Coskun et al. [15] proposed to also add Long Short-Term Memory cells [16] (LSTM) to model the unknown
dynamics of the studied state. Later several versions of hybridization between KF and NN were proposed. In 2019, Brossard
et al. [2] used a Convolutional Neural Network (CNN) to adapt the measurement noise matrix for dead-reckoning of ground
vehicles solely based on inertial measurement. In the same year, Ju et al. [17] added a NN involving CNN and LSTM to predict
accelerations due to proximity to other targets for car trajectories prediction. Still in 2019, Mercat et al. [18] proposed a NN for
multi-target trajectories forecasting. These algorithms use NN when the specific problem to solve does not fit the required as-
sumptions to properly use a KF (essentially lack of knowledge of dynamics and/or interactions or use of pseudo-measurements).
However, for our particular problem measurements are already provided as multivariate normal distributions (MND).

The rest of this paper is organized as follows. In Section 2, KF and the proposed adaptation are described. In Section 3, the
dataset, training parameters and results are presented.

2. THE PROPOSED ADAPTATION

2.1. Kalman Filter

To track an aircraft, a sequence of position measurements at times tn is provided to the filter as MNDs represented by their
mean vectors Yn and covariance matrices Rn. The state of the target is also modeled as a MND represented by Xn and Pn.
The KF works as a recursive filter, updating the state for each new measurement as follows.

Evolution/Propagation:

Xn|n−1 = FnXn−1|n−1 (1)

Pn|n−1 = FnPn−1|n−1F
T
n +Qn (2)
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Fig. 2. Schematic representation of the proposed filter (NNAKF). Input data is represented in red, and trainable components of
the filter are represented in green.

Gain computation:

Zn = Yn −HnXn|n−1 (3)

Sn = HnPn|n−1H
T
n +Rn (4)

Kn = Pn|n−1H
T
n S
−1
n (5)

Estimation:

Xn|n = Xn|n−1 +KnZn (6)
Pn|n = (I −KnHn)Pn|n−1 (7)

Here we consider an evolution governed by a system of linear differential equations dX
dt = AX , A depending on the chosen

evolution model. The process noise is modeled as a Brownian motion with a magnitude given by a covariance matrix Q̃, such
as :

∆tn = tn − tn+1 (8)

Fn = eA∆tn (9)

Qn =

∆tn∫
0

eAsQ̃eA
T sds (10)

Since every operation composing the KF is differentiable, the matrix Q̃ can be automatically tuned [12] given a dataset
using gradient based optimization algorithms as Q̃ = WWT where W is a matrix full of trainable parameters. The KF can
then be trained in a similar fashion to RNNs, for instance using backpropagation through time [19].

2.2. Neural Network Adaptation for Kalman Filters (NNAKF)

Tuning the process noise can be tricky [20]. If it is low, the estimation of the filter will be great when the trajectory respects the
chosen model, but it will be poor when it doesn’t. If the process noise is high, the filter will mostly trust the measurement and
will become noise-sensitive. Sometimes an acceptable trade-off cannot even be found. Figure 1 illustrates the influence of the
process noise parameter on the tracking.

The proposed adaptation works by adding more or less noise after propagation. To this aim, a set of N + 1 covariance ma-
trices (Q̃i)i∈[|0,N |] is tuned, N being a hyper-parameter of the filter. A first evolution step is made to give a first approximation
(Xn|n−1, P

∗
n|n−1) of the state at time tn, using Q̃0 as Brownian motion magnitude. The normalized squared innovation In,j is

then computed on each axis just like for the Castella adaptation [1] :

∀j ∈ {x, y, z}, In,j =
Z2
n,j

Sn,j,j
(11)

These values are used as inputs to a NN that outputs N coefficients bounded between 0 and 1 via a sigmoid function. An
additional process noise is used, depending on the coefficients σi, such as the total magnitude of the Brownian motion added to
the evolution between tn−1 and tn is:



Q̃ = Q̃0 +

N∑
i=1

σiQ̃i (12)

A schematic representation of the NNAKF is given in Figure 2. This adaptation was inspired by the Castella adaptation,
and aims to add more noise when and only when the chosen model does not match with the trajectory. The main differences
with the classical adaptation are as follows. First, adaptation is more complex, and it is able to keep memory of its past thanks
to the LSTM cell. Then, we adapt the full process noise covariance matrix, not only the diagonal part related to speed.

3. EXPERIMENTS

3.1. Dataset

Filter Type 1 Type 2 Type 3 Type 4
Oracle 19.26 15.50 13.31 13.94
KF 46.24 48.34 55.55 46.62
Castella 40.72 44.11 50.16 42.33
Vaidehi 45.01 47.57 55.58 45.56
LSTM-KF 69.69 71.40 74.65 75.04
NNAKF (ours) 38.13 41.64 46.40 41.39

Table 1. Average error of the estimated horizontal position,
values are given in meters.

Filter Type 1 Type 2 Type 3 Type 4
Oracle 8.52 8.87 8.91 8.63
KF 31.57 31.88 32.38 46.13
Castella 31.93 32.23 32.73 45.52
Vaidehi 31.92 32.22 32.70 45.79
LSTM-KF 31.30 34.33 35.26 42.22
NNAKF (ours) 26.98 27.37 27.95 45.68

Table 2. Average error of the estimated altitude, values are
given in meters.

Filter Type 1 Type 2 Type 3 Type 4
Oracle 0.56 0.45 0.34 0.41
KF 3.65 3.67 4.02 3.64
Castella 2.47 2.66 3.32 2.54
Vaidehi 3.69 3.71 4.04 3.68
LSTM-KF 17.80 20.59 39.79 29.01
NNAKF (ours) 1.95 2.24 3.17 2.12

Table 3. Average error of the estimated horizontal speed,
values are given in meters per seconds.

Filter Type 1 Type 2 Type 3 Type 4
Oracle 1.42 0.39 0.20 0.07
KF 17.53 6.60 5.26 1.43
Castella 13.26 5.55 4.37 1.22
Vaidehi 17.51 6.46 5.14 1.41
LSTM-KF 78.23 71.11 66.93 22.94
NNAKF (ours) 11.07 5.10 3.88 1.18

Table 4. Average error of the estimated heading, values are
given in degrees (◦).

The dataset is constructed using simulations. First, the non-noisy 3-D trajectories are built using three randomly generated
flight commands: turn rate, horizontal acceleration and vertical speed. To generate any of these commands, we start from a
Gaussian white noise with a given magnitude, then it is processed by a low-pass convolution filter with a given cut-off frequency
to get a smooth signal, and finally it is set to zero when its absolute value is under a given threshold. This process leads to a
signal that can stay at zero and sometimes exhibit a peak with positive or negative values. Three parameters are used to control
the average frequency of occurrence, length and magnitude of the peaks. In addition to these three parameters for each of the
three flight commands, two more are used to bound the ground speed.

Altogether, the simulator can randomly generate a realistic trajectory using a set of eleven parameters. Four different
combinations were used in the generated datasets with equal proportions to ensure the diversity of the trajectories. Then the
detections of the aircraft by a sensor are simulated by adding a Gaussian noise to the position of the trajectory at different
selected times. For each of the four types of trajectory, 1500 trajectories were generated, 1000 of them were used as training
dataset, 250 as validation dataset, and 250 as testing dataset. All trajectories are 10-minutes long and detections were made at
a regular time step of 4s.

3.2. Filters

Different variations of Kalman filters were compared:



6 8 10 12 14 16 18
x (km)

1

2

3

4

5

6

7

8

9

y 
(k
m

)

Detections
Ground truth
Oracle
KF
Castella
NNAKF (ours)

Fig. 3. Example of tracking results projected in the horizontal plane. For each filter, estimated position is represented by a cross
and the estimated velocity by a speed vector. Oracle’s output and the ground truth are almost indistinguishable. It seems on this
particular trajectory that the NNAKF adapts quicker to the turn while it is stable during straight lines.

KF: this is the regular Kalman Filter, using a constant speed (CS) model, i.e., A =

(
0 I
0 0

)
.

Castella [1]: A simple adaptation of the KF with CS model is performed based on the normalized square innovations of
(11), by increasing noise parameter on the corresponding speed component.

Vaidehi: this variation of the KF proposed by Vaidehi et al. [21] uses a NN that takes the innovation, gain and correction to
produce an additional correction to the estimation provided by a KF with CS model. The original filter was made to track four
targets at once, but can easily be adaptated to a mono-target problem.

LSTM-KF: this filter replaces the evolution process by a NN. It differs from the LSTM-KF proposed by Coskun [15] by
only using NNs for evolution (LSTMF ) and process noise (LSTMQ), measured state and measurement noise being provided
by the dataset. This filter, originally intended to be used for human pose estimation on camera recordings, works without any
prior knowledge of the target’s kinematic. It is similar to the Mnemonic Kalman Filter proposed by [22].

NNAKF: this is a KF with CS model and the proposed adaptation explained in Section 2. The hyper-parameter N was
empirically set to 10.

Except for the LSTM-KF, these filters all rely on a CS model as a first-order approximation of the model. All of these were
trained with the Adadelta optimization algorithm and the average over time of the following loss function.

Hn = ‖Xn|n − Ȳn‖2Pn|n
+ ln|Pn|n| (13)

The operator ‖ · ‖Σ denotes the Mahalanobis distance associated with the covariance matrix Σ and Ȳn is the true state
including position and speed. Minimizing this loss boils down to maximizing the loglikelihood of the ground truth according
to the output of the filter. The gradient is computed on the 4000 trajectories of the training dataset by batches of size 50, and
the loss is monitored on the 1000 trajectories of the validation dataset. Finally, the testing dataset is used to evaluate the trained
filters in the next subsection. We also made use of the following alternate filter, for comparison purposes:

Oracle: This is an extended Kalman filter with a more complex state (position, norm of velocity, heading) whose dynamical
model exactly matches with the trajectory being performed. It gives an idea of the minimum error one could reach using a filter
having a perfect knowledge of the flight commands at all times, which is of course impossible.

3.3. Results

All compared filters were implemented in Keras/Tensorflow as custom recurrent layers and trained end to end. The results
shown in Tables 1 to 4 are average errors of the compared filters on different metrics. An example of tracked trajectory can be
found in Figure 3. The different types of trajectories in the dataset are separated since error can substantially vary from one
to another. The proposed filter seems to outperform the other filters most of the time. The improvement due to the Vaidehi
correction looks incremental, even compared to Castella’s adaptation. The poor results of the LSTM-KF can be explained by



its lack of prior knowledge of the aircraft motion, i.e., CS model. Another limitation of this filter is that it requires a regular
time step between measurements.

4. CONCLUSION

In this paper, a variation of a Kalman filter is proposed, using NN to adapt the process noise by the mean of an LSTM cell. By
combining prior knowledge of the approximated target motion, memory of the integrated RNN, and precision of the automatic
tuning by gradient-based optimization algorithms, the proposed filter with NNAKF is able to outperform classical and neural-
network-aided KF based on CS model. The poor results of LSTM-KF on our problem seems to show that future work should
focus on improving existing reliable models used in state-of-the-art filters, such as the IMM [8] or the IEKF [6, 7].
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