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Totally dissipative measures for the shift and
conformal σ-finite measures for the stable holonomies

Renaud Leplaideur∗

Abstract

In this paper we investigate some results of ergodic theory with infinite mea-
sures for a subshift of finite type. We give an explicit way to construct σ-finite
measures which are quasi-invariant by the stable holonomy and equivalent to the
conditional measures of some σ-invariant measure. These σ-invariant measures are
totally dissipative, σ-finite but satisfy a Birkhoff Ergodic-like Theorem .

The constructions are done for the symbolic case, but can be extended for uni-
formly hyperbolic flows or diffeomorphisms.
Keywords: holonomy, shift, σ-finite measure, hole, dotted-system, Gibbs states,
return time

1 Introduction and statements of results

We consider a mixing two sided subshift of finite type with finite alphabet (Σ, σ)
The set of vertices of the defining graph of (Σ, σ) is {1, . . . , N} with N ≥ 2. We
denote by A = (aij) the N×N -transition (aperiodic) matrix of 0,1’s associated to
Σ; namely points in Σ are sequences x = (xn)n∈Z such that for every n, xn belongs
to {1, . . . , N} and

axnxn+1 = 1.

In Σ, the cylinder [ik, . . . , ik+n] denotes the set of points y ∈ Σ such that yj = ij
(for every k ≤ j ≤ k+ n). Such a cylinder is also called a word (of length n+ 1) or
equivalently a (k, k + n)-cylinder.

The letter R denotes one of the (0, 0)-cylinders of Σ. Throughout we assume
that there exists a periodic orbit for σ in Σ which avoids R. Note that unless Σ
is a unique periodic orbit, there always exists such a periodic orbit as soon as R is
chosen small enough. Then, a higher-block representation allows us to consider the
cylinder R as a (0, 0)-cylinder.

Let φ be a α-Hölder continuous function from Σ to R. We assume that φ is
dependent only on the future. Let β be a real number. Let mβ be the unique
equilibrium state associated to the potential φ − β1IR. In [Lep05] we proved that
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mβ converges to a measure m when β goes to +∞. Moreover m is a maximizing
measure for −1IR with maximal φ-pressure among these measures. This means that

−m(R) = max
ν σ−inv

{−ν(R)},

and hm(σ) +
∫
φdm = max{hm′(σ) +

∫
φdm′}, where the maximum is taken over

measures m′ satisfying
−m′(R) = max

ν σ−inv
{−ν(R)}.

Due to our assumption on R, we get here

max
ν σ−inv

{−ν(R)} = 0.

In [Lep00] we introduced a method to study the local structure of the Gibbs
measure for the system (Σ, σ) associated to the potential φ. The main points are
recalled in Section 2. Let g be the first return map into R by iterations of σ. We
prove here (see Lemma 2.1) that a direct consequence of the construction in [Lep00]
is that there exists a g-invariant measure µ̌β in R such that

µ̌β(.) =
mβ(. ∩R)
mβ(R)

. (1)

The main motivation for this paper was then to investigate what happens when
the parameter β goes to +∞. Remember that limβ→+∞mβ(R) = 0. Our goal was
to understand how the connection between µ̌β and mβ given by (1) breaks off: does
µ̌β also converges and/or if µ̂ is an accumulation point for µ̌β as β tends to +∞ is
there still a relation between m∞ and µ̂?

Our first result is:

Theorem 1 With these notations,

1. µ̌β converges to some probability measure µ̂ with support in R when β goes to
+∞.

2. The support of µ̂, satisfies supp µ̂ ∩ σk(supp µ̂) = ∅ for every k 6= 0.

3. the opened-out measure µ′
def
=
∑

k≥0

σk∗ µ̂ is a σ-finite measure with the same

asymptotic as that of m: for µ′ almost every x and for every continuous func-
tion ψ,

lim
n→+∞

1
n
Sn(ψ)(x) =

∫
ψ dmx, (2)

where mx is one of the ergodic components of m.

Remark 1. The explanation to consider ǎ and â will appear soon. �

We emphasize that (2) says that there is still some memory of the connection
at the limit. We want to insist on this last point. Even if the measure µ′ is
totally dissipative it has some dynamical asymptotic given by (2). Note that usually,
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dissipative measures are not studied because typical points are not recurrent (from
the measure point of view). Moreover we emphasize that the property (2) is very
different from the conservative case. Indeed, for the conservative case on compact
set, continuous functions are not in L1. It is also known (see [Aar97]) that there
are no constants an > 0 such that almost everywhere and for every function in L1

Sn(f)
an

→n→+∞

∫
f.

On the contrary, in our case, we deal with continuous functions and have convergence
or the usual Birkhoff average.

It turns out that our result is related to the question of the unique ergodicity
for horocycle foliations. This is the second motivation for this paper. This question
was studied by R. Bowen and B. Marcus in [BM77], by N. Haydn in [Hay94] and
by the author in [Lep00] (among others). We shall first introduce some notations
and vocabulary.

For x = (xn) in Σ we denote by W u
loc(x) the local unstable leaf at x:

y = (yn) ∈W u
loc(x) ⇐⇒ ∀n ≤ 0, yn = xn.

The global unstable leaf W u(x) is defined by

W u(x) =
⋃

n≥0

σn(W u
loc(σ

−n(x))).

This corresponds to the set of points y whose past eventually equals the past of x.
Local and global stable leaves are defined similarly exchanging the forward and the
backward directions. The set of local unstable leaves is a measurable partition (see
[Roh62]).

Let x and y be two points in Σ. Let Kx and Ky be two compact sets respectively
in W u

loc(x) and W u
loc(y). A stable holonomy from Kx onto Ky is an invertible map

hs : Kx → Ky such that for every z in Kx, hs(z) belongs to Ky ∩W s(z).
Let τφ denotes the Gibbs measure for the system (Σ, σ) associated to the po-

tential φ (i.e. τφ = m0). Let (τuφ,x) denotes the system of conditional measures of
τφ with respect to the partition in local unstable leaves. There exists a system of
measures (νuφ,x) such that

(H1) νuφ,x is a probability measure equivalent to τuφ,x,

(H2) For every x and y in Σ, for every stable holonomy hs : Kx → Ky and for
every z in Kx

dνuφ,y ◦ h
dνuφ,x

= eω(z,h(z)), (3)

where ω(z, h(z)) =
∑+∞

j=0

[
φ ◦ σj(z)− φ ◦ σj ◦ h(z)

]
.

For the rest of the paper, a system of measures (νux ) satisfying [H2] is referred to
as a φ-conformal systems of transversal measures (φ-cstm in abridged way). In
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[BM77, Hay94, Lep00], for different cases or with different proofs, it is proved that,
up to a multiplicative constant, there exists a unique φ-cstm satisfying in addition

∀x, νux (W u
loc(x)) < +∞. (4)

This system is the system (νuφ,x) and is referred to as the equilibrium φ-conformal
systems of transversal measures (eφ-cstm in abridged way). Moreover if (νux ) is a φ-
cstm and if for one x, νux (W u

loc(x)) is finite, then the systems (νux ) is proportional to
the unique eφ-cstm. This is the so-called unique ergodicity of the horocycle foliation.
This is related to the unique ergodicity of the horocycle flow in ergodic geometry
for which there exists a large literature (see e.g. [Fur73, Dan78, Bur90, Cou01]).

Our second motivation for the paper was to understand where/why this unique
ergodicity appears; more precisely, we want to understand where other natural
candidates (see below) to be finite φ-cstm effectively fail to be finite φ-cstm.

In the other hand, K. Schmidt proved in [Sch77] that there exist other φ-cstm.
His proof does however not furnish explicit example. As a by-product of our study,
our natural candidates to be finite φ-cstm (but fail to be, due to the unique ergod-
icity) furnish such simple and explicit example of other φ-cstm than the eφ-cstm.

We emphasize that we are here dealing with two different dynamics. The dy-
namics of the holonomies, for which the φ-cstm are relevant, and the dynamics of
the shift σ for which σ-invariant measures (like Gibbs states) are relevant.

Definition 1.1. Let (νux ) be a φ-cstm and µ be a σ-invariant measure. Let (µux)
be the system of conditional measures with respect to the partition in local unstable
leaves.

We say that the φ-cstm is integrated by the measure µ, and/or that the measure
µ integrates the φ-cstm if

(H1’) for every x, νux is equivalent to µux.

We are interested in finding φ-cstm that are integrated by σ-invariant measures.
For example, the unique eφ-cstm is integrated by the unique Gibbs measure τφ.

Our candidates to be finite φ-cstm are the following: considering a mixing sub-
shift of finite type Σ′ ( Σ and the associated Gibbs measure for (Σ′, σ), say τ ′φ, there
exists in Σ′ a unique eφ-cstm, say (ν ′φ,x). Clearly this systems (ν ′φ,x) is a candidate
to be a “global” finite φ-cstm. Why does this not hold?

Note that the measure m obtained as the limit of mβ is a barycenter of such ν ′φ
(see [Lep05]). Our second result is

Theorem 2 Let m be the limit measure limβ→+∞mβ. Let (mu
x) be its system of

conditional measure with respect to the partition in local unstable leaves.
Then, there exists a φ-cstm (νuR,x) such that for every x, mu

x is equivalent to
νuR,x. Moreover, there exists a σ-finite and σ-invariant measure τ which integrates
(νuR,x). The measure τ is not locally finite and not ergodic.

In particular, Theorem 2 gives explicit examples of φ-cstm integrated by σ-
invariant measures. Moreover, we have:
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Corollary 3 There are infinitely many non equivalent σ-finite measures which in-
tegrate φ-conformal systems of transversal measures.

As far as we know, the question of infinite φ-cstm has not been investigated a
lot (at least for the compact case). For the non-compact case we mention works of
Ledrappier and Sarig (see e.g. [LS07]).

As we said above, K. Schmidt proved in [Sch77], that, when a general dynami-
cal system (X,T ) is uniquely ergodic, then it necessarily admits uncountable many
σ-finite invariant measures. Existence of φ-cstm different from the uniqueeφ-cstm
results from this. However the proof in [Sch77] deeply uses a measurable correspon-
dence between Z2-orbits and Z-orbits; this orbital correspondence is not explicit at
all.

In the same direction, L. Arnold gave a general condition for existence of invari-
ant measure in the case of non-singular transformations in [Arn68]. We recall that a
non-singular transformation is a dynamical system (X,T ) equipped with a measure
of reference, µ, such µ(T−1(B)) = 0 if and only if µ(B) = 0. This result could be
used for proving Theorem 2 and for the particular case φ ≡ 0 . For that, we should
consider the system (mu

x) as the “measure of reference”. This would however not
work for general case, φ 6≡ 0.

Moreover, these two arguments could produce invariant measures for the holonomies,
but it seems not clear that theses measures are integrable by σ-invariant measures.

Our construction is done when the system is a subshift of finite type. It also
uses only one ”rectangular hole” (see below). However, the same proof holds for
Axiom-A diffeomorphisms or flows which are special flows. It should also work
when we consider several ”holes”, but in that case, the dotted system would be
more complicated.

Let us finish this introduction by mentioning a question related to our construc-
tion :

Question. Does it exist some probability measure, different from the equilibrium
state µφ, invariant by the shift, which integrates a non-locally finite φ-cstm?

Outline of the paper In the section 2 we precise the vocabulary used and recall
some key points of [Lep00] for the construction of the measures µ̌β. In particular
we introduce a new parameter, Z = Z(β). We emphasize that our proofs use quite
sophisticated estimates for the transfer operators. In this section we thus also recall
some facts on the Transfer Operator Theory.

Section 3 is technical; we prove the convergence for some other objects (also
depending on β and/or Z). In section 4 we prove Theorem 1 using results from
Section 3.

In section 5 we prove Theorem 2. We first construct the φ-cstm defined by
the system (mu

x), and then, we construct one σ-finite measure which integrates this
system. We finish the section by proving that the construction leads to infinitely
many non-equivalent measures (Corollary 3).



2. Extra vocabulary, notations, recall on [Lep00] 6

2 Extra vocabulary, notations, recall on [Lep00]

In this section we give some more definitions and notations, make precise some
vocabulary and some points in the theory of equilibrium states and transfer operator
(see subsection 2.1). Then we define a subsystems and give properties of a one-
parameter family of transfer operators. This parameter is denoted by Z. We explain
the link between the two parameters β and Z. Then we prove that mβ converges
as β goes to +∞.

2.1 Vocabulary and notations

For a given point x = (xn) ∈ Σ, the past (resp. future) of the point denotes the
backward (resp. forward) sequence (xn)n≤0 (resp. (xn)n≥0). For x and y in Σ,

when x0 = y0, the point z
def
= Jy, xK is the point (zn) defined by zn = yn if n ≤ 0

and zn = xn if n ≥ 0.
Let x = (xn) and y = (yn) be two points in Σ. We set

N(x, y) := minn ≥ 0, xn 6= yn or x−n 6= y−n.

In Σ the metric d is given by d(x, y) =
1

2N(x,y)
.

We recall that any α-Hölder continuous function from Σ to R is cohomologous
to a α

2 -Hölder which is dependent only on the future (see [Bow75] Lemma 1.6). This
assumption on φ was thus “free”.

We also recall that the α-norm is defined by

||φ||α = sup
x 6=y

|φ(x)− φ(y)|
dα(x, y)

.

If x is in Σ, Ck,k+n(x) denotes the cylinder [ik, . . . , ik+n] such that xj = ij (for
every k ≤ j ≤ k + n). By extension, C−∞,n(x) denotes the set of points (yk) such
that yk = xk for every k ≤ n; similarly Cn,+∞(x) denotes the set of points (yk)
such that yk = xk for every k ≥ n. By definition, the local unstable leaf W u

loc(x) is
C−∞,0(x), and the local stable leaf W s

loc(x) is C0,+∞(x).

2.2 Thermodynamical formalism

2.2.1 Gibbs measures and equilibrium states

The eφ-cstm is equivalent to the system of conditional measures with respect to any
measurable partition subordinate to the unstable leaves of the unique φ-equilibrium
state τφ. Recall that τφ, is the unique probability σ-invariant measure such that

hτφ(σ) +
∫
φdτφ = sup

τ
{hτ (σ) +

∫
φdτ}.

The eφ-cstm also satisfies

dνuφ,x
dσ−1νuφ,σ(x)

= eφ(x)−P(φ), (5)
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where P(φ) = hτφ(σ) +
∫
φdτφ is the pressure of φ.

Remark 2. This is a usual tool in that theory to replace a condition on the
holonomies like (3) by a condition on the shift like (5). �

For a given σ-invariant measure λ, the φ-pressure is the quantity Pλ(φ) :=
hλ(σ) +

∫
φdλ; Pλ(φ) will also be called the λ-pressure when there is no ambiguity

on φ.

2.2.2 Transfer operator

In a general way, for a two sided shift of finite type Σ̃, Σ̃+ will denote the forward
one sided shift. A word is admissible for a shift Σ̃ if it defines a non-empty cylinder
in Σ̃.

We now recall some element of the transfer operator theory. We refer to the book
[Bal00] (Section 1.3 p. 28) for complete proof in general statements. In particular,
the next facts are also valid for any uniformly expanding (or hyperbolic) dynamical
system.

If ψ : Σ̃+ → R is Hölder continuous, the transfer operator or equivalently the
Ruelle Perron Frobenius operator for (Σ̃+, σ, ψ) is defined by

L(T )(x) =
∑

σ(y)=x

eψ(y)T (y),

where T is a continuous function from Σ̃+ to R, and x and y are in Σ̃+. We call
conformal measure (for ψ) the eigenmeasure for the adjoint operator of the transfer
operator.

This measure νψ is characterized by

L∗(νψ) =
(∫
L(1IeΣ+)dνψ

)
.νψ,

and it turns out that λ :=
∫
L(1IeΣ+)dνψ is the spectral radius for L and L∗. More-

over, λ is a dominating eigenvalue for L, with eigenvector the positive Hölder con-
tinuous function

H := lim
n→+∞

1
n

∑

k

1
λk
Lk(1IeΣ+). (6)

Result 1. The function H has the same Hölder regularity than ψ.

Result 2. The function H is positive. Indeed, note that by construction it is
non-negative. Now, the equality

λ.H = L(H),

prove that if H(x) = 0, then H is null on a dense set, hence null everywhere by
continuity.
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Result 3. The measure defined by dτψ := Hdνψ is the unique equilibrium state
for the potential ψ in Σ̃+.

Remark 3. The system of measure (νuφ,x) from above is defined using this measure
νψ with ψ = φ. �

Result 4. There is a spectral decomposition for Hölder continuous functions:

Lp(T )(x) = λp
∫
T dνψH(x) + ep(log λ−ε)Rp(T )(x), (7)

where ||Rp(T )||∞ ≤ C||T ||α, ε and C are positive real numbers which do not depend
on T (ε is the spectral gap).

Result 5. The Dœblin-Fortet inequality holds: there exist 0 < a < 1 and b > 0
and an integer n0 such that for every Hölder function T ,

∀n ≥ n0, ||λ−nLn(T )||α ≤ an.||T ||α + b.||T ||∞. (8)

Now, if ψ is defined on Σ̃, the unique equilibrium state for (Σ̃, σ, ψ) is the natural
extension in Σ̃ of the unique equilibrium state for (Σ̃+, σ, ψ+) ,where ψ+ is the
unique Hölder function cohomologous to ψ and which does only depend on the
future (constant on local stable leaves).

2.3 Local thermodynamic formalism.

In this section we define the local equilibrium states as in [Lep00].
Remember that the letter R denotes one of the (0, 0)-cylinders of Σ. It corre-

sponds to the vertices iR in the alphabet of Σ. The letter F will denote some local
unstable leaf in R. Namely, F denotes all the points in R which have a same given
past. The natural projection from R onto F is defined by πF (z) = Jx, zK, where x
is any point in F .

For x in R, r(x) is the first return time in R by iterations of σ (if it exists)
and g is the first return map in R. We denote by gF the map πF ◦ g. Namely if
x = (xn) ∈ F is given by

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, x1, . . . , xn−1︸ ︷︷ ︸

no iR

, iR, xn+1, . . . ,

where ↓ indicates the initial position x0, then g(x) = σn(x) and is the infinite word

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

iR, x1, . . . , xn−1︸ ︷︷ ︸
no iR

,
↓
iR, xn+1, . . . .

Then, gF (x) is the new infinite word

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, xn+1, . . . ,
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These maps g and gF are not defined everywhere, because some points never
return into R. Note however, that, due to the Markov property, the inverse branches
of gF are well defined in the whole F :

with the previous notations if . . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, y1, . . . is a point y in F , the

point in F . . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, x1, . . . , xn−1︸ ︷︷ ︸

no iR

, iR, y1, . . . is mapped by gF to y.

We can define the Ruelle-Perron-Frobenius operator for gF : for x in F , we
denote by Pre1(x) the set of preimages of x by gF . For y in Pre1(x), we have
x = gF (y) := πF ◦ σr(y)(y) and we set

Φ(y) := Sr(y)(φ)(y) = φ(y) + . . .+ φ ◦ σr(y)−1(y).

Then we set
LZ(T )(x) =

∑

y∈Pre1(x)

eΦ(y)−r(y).ZT (y),

where T : F → R is a continuous function, and Z is a real parameter. Note that due
to the Markov property, LZ acts on continuous function defined on F ; hence, the
adjoint operator L∗Z acts on the measures defined on F . This family of operators was
studied in [Lep00]. There, we proved that there exists some critical Zc, such that
LZ(1IF ) exists only for every Z > Zc. Moreover, and always for Z > Zc, LZ admits
a unique and single dominating eigenvalue λZ in the set of α-Hölder continuous
functions. We also proved that the adjoint operator L∗Z has λZ for unique and
single dominating eigenvalue.

Equilibrium state for (F, gF ). Let us denote by νZ the unique probability
measure on F such that L∗Z(νZ) = λZ .νZ . We denote by HZ , the unique α-Hölder
continuous and positive function on F satisfying LZ(HZ) = λZ .HZ and

∫
HZ dνZ =

1. We also denote by µZ the measure HZ .νZ . In [Lep00], we proved that µZ is a gF -
invariant probability measure. As we explained above at the end of Subsection 2.1,
the measure µZ is an equilibrium state for the system (F, gF ) and for the potential
Φ− Z.r(.) (here we use that φ is constant along local stable leaves).

Equilibrium state for (R, g). In [Lep00] we also proved that there exists a
unique g-invariant probability measure with support in R whose image by πF is µZ .
This measure is the measure µ̂Z and is the natural extension of µZ . It is the unique
equilibrium state for the system (R, g) and the potential Φ− Zr(.).

2.4 Notations for measures

One of the difficulties here comes from the large number of measures involved. We
have thus adopted some fixed terminology and we shall explain it now. We also
refer to Figure 1 page 13 to an overview of all the measures.
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The letter ν shall usually denote a conformal measure, that is an eigen-measure
for some transfer operator as it is explained above. Note that formally, such a
measure “leaves” in a one sided subshift of finite type.

The letter µ and in particular µ shall designate a gF -invariant measure on F .
When the index in is Z, then µZ is the unique equilibrium state for gF and for the
potential Φ−Z.r(.). Later we shall change of parameter and use β = β(Z) instead
of Z.

A measure µ̂ and/or µ̂ is a g-invariant measure in R. It is usually seen as the
natural extension of µ and/or µ . We shall later use the other parameter β and
the measure µ̌β is the measure µ̂Z with β = β(Z), or equivalently Z = Z(β).

A measure τ or m shall usually refer to a σ-invariant measure in the whole
subshift of finite type. The measure m is usually seen as the opened-out for µ̂ ,
that is µ̂ is the restriction of m renormalized in R.

The equilibrium state for φ in Σ is denoted by τφ. More generally, every λ ,
where λ is a measure and contains φ, denotes a measure related to the equilibrium
state for φ (see e.g. τφ).

Measures of the form λu ,x shall refer to measures on the local unstable leaf
W u
loc(x). If the “associated” measure λ is σ-invariant (hence λ = µ or m ), then

λu ,x is the unique system of conditional measure. On the contrary if λ = ν, then
we refer to the invariance or absolutely continuity along for the holonomies along
unstable leaves (see e.g. τuφ,x and νuφ,x in the introduction).

2.5 More about LZ, value for Zc, change of parameter

We now recall some properties of the family of operators LZ . Remember that LZ
is the transfer operator associated to the map gF . Hence, each x in F has infinitely
many preimages by gF , and one question is to check the convergence in the series
which defines LZ(T )(x).

Let us pick some x in the unstable leaf F ⊂ R; we consider some x′ in Pre1(x),
and some y in F . The Markov property of σ yields

πF ◦ σr(x
′)(C0,r(x′)(x

′)) = F.

It implies that C0,r(x′)(x′) contains a unique y′ ∈ Pre1(y). Therefore, using the
Hölder regularity of φ, we get that there exists a constant Cφ, which depends only
on φ, such that |Sr(x)(φ)(x′) − Sr(y)(φ)(y′)| ≤ Cφ. This holds for every pair of
preimages. By induction, this holds for pair of preimages for the map gnF . Then, we
get for every n and for all x and y in F ,

e−CφLnZ(1IF )(x) ≤ LnZ(1IF )(y) ≤ eCφLnZ(1IF )(x). (9)

Remember that F is compact, and thus every continuous function on F is
bounded; hence (9) used for n = 1 allows to prove that the series LZ(ψ)(x) con-
verges, for every point x and for any continuous function ψ, as soon as LZ(1IF )(y)
converges for one y. This defines Zc: for a given y we write

LZ(1IF )(y) =
+∞∑

n=1

an(y)e−nZ ,
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which is a power series in e−Z . Then we set Zc = lim supn→+∞
1
n log(an(y)). Hence

for every Z > Zc the power series LZ(1IF )(y) converges.
In [CL05] (Subsection 3.3), it is proved that the critical value Zc is the pressure

of the dotted system, with hole R, associated to φ. Namely we consider in Σ the
sub-system ΣR of all the sequences x = (xn)n∈Z such that xn never equals iR.
Equivalently, ΣR is the set of points whose orbit never intersects the set R (under
the action of the shift σ). This subshift has for transition matrix the matrix A′
obtained from A by removing the line and the row corresponding to the vertices
iR. Up to the fact that this new system is mixing, it is proved in [CL05] that its
φ-pressure is the critical Zc.

We now claim that the mixing hypothesis in [CL05] can be omitted. Indeed,
any subshift of finite type can be decomposed in irreducible components, which
satisfy the mixing property, but for some iteration of the map σ (see [Ale76]). As
we are considering first returns in R, note that the word defined by the cylinder
C0,r(x)−1(x) contains no iR but at the first position. Hence, the word defined by
C1,r(x)−1(x) is an admissible word for ΣR (if we assume that r(x) > 1). By definition
of the irreducible components, and by definition of ΣR, it is an admissible word for
a unique irreducible component of ΣR.

Now, in a transitive subshift of finite type, the topological pressure associated
to φ is the limit in n of

1
n

log(
∑

eSn(φ)(ξ)),

where the sum is done over every words of length n in the considered subshift, and
we choose one point in the associated cylinder for each such word. It is however
well-known, that the sum which defines the pressure, can be restricted to words
whose initial position is a vertices in one fixed basic set. It is not necessary to
consider all the words, but a sufficiently large number of them. To check this, just
use Result 4 (page 8) with the appropriate T .

If the system has several irreducible components, the pressure is defined as the
maximum of all the pressure in the irreducible components. But as there are finitely
many components, this is equivalent to consider the sum over all the words of length
n. With these considerations, we point-out that the term an(y) is exactly one such
sum

∑
eSn(φ)(ξ). Therefore Zc is the topological pressure of ΣR associated to φ.

In [CL05] ( proof of Lemma 3.4), it was also proved that λZ → +∞ as Z goes
to Zc. Moreover, the map Z 7→ log λZ is a decreasing convex map on ]Zc,+∞[. By
definition of νZ we have λZ =

∫
LZ(1IF ) dνZ . Therefore (9) yields

0 ≤ λZ ≤ eCφLZ(1IF )(x).

The right hand side term is a power series in e−Z , with valuation at least 1. There-
fore λZ goes to 0 as Z goes to +∞.

Hence, the map Z 7→ log λZ is a decreasing bijection from ]Zc,+∞[ onto R.
From now until the end of the paper, we set

β = β(Z)
def
= log λZ .



2. Extra vocabulary, notations, recall on [Lep00] 12

As the map Z 7→ log λZ is a bijection, we can consider the inverse map, β 7→ Z
such that log λZ = β. Then, β → +∞ is equivalent to Z → Zc. For the rest of the
paper, we shall consider any of the two parameters, β or Z, considering that when
one is fixed, the other is also fixed.

2.6 Convergence for mβ

In [Lep00] it is proved that for every Z > Zc there exists a unique σ-invariant
probability measure m′β(z) such that

µ̂Z =
m′β(Z)(. ∩R)

m′β(Z)(R)

.

Lemma 2.1. We have m′β = mβ, and for every Z > Zc,

hmβ (σ) +
∫
φdmβ = Z +mβ(R)β. (10)

Proof. We have to prove that the measure m′β = mZ is the unique equilibrium state
in (Σ, σ) associated to φ− β(Z).1IR.

Let us pick some σ-invariant probability measure τ . We first assume that τ(R) >
0. Then, we have,

hτ (σ) +
∫
φdτ − Z = τ(R)

(
hτ|R(g) +

∫
Sr(.)(φ) dτ|R − Z.

∫
r(.) dτ|R

)
,

≤ τ(R)β,

where τ|R is the conditional measure τ(.|R), and where the last inequality is obtained
by the variational principe. This gives

hτ (σ) +
∫
φdτ − β.

∫
1IR dτ ≤ Z,

with equality if and only if τ|R = µ̂Z (i.e. mZ = m′β = τ).
If we assume that τ(R) = 0, then τ is a σ-invariant probability measure with

support in ΣR. Therefore it must satisfy

hτ (σ) +
∫
φdτ − β.

∫
1IR dτ = hτ (σ) +

∫
φdτ ≤ Zc < Z.

This proves that m′β is the unique equilibrium state for φ − β.1IR, namely that we
get m′β = mβ.

Remark 4. Following our notations, µ̂Z = µ̌β with β = β(Z). �
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σ

m′
β = mβ = τφ−β.1R

, σ-invariant

νZ and µZ , gF -invariant

µ̂Z = µ̌β, g-invariant

R

πF

g

Figure 1: Local and global measures

As we said above, when Z goes to Zc, β goes to +∞; we thus use the theorem
of convergence for equilibrium state a temperature zero (see [Lep05]) to get the
convergence of mβ to some limit measure m. This measure m is maximizing for
−1IR, and we have seen that its supports is in ΣR.

We now describe which irreducible components of the dotted systems ΣR have
positive m-measure. It is well-known (see [CLT01]), that m is a measure in ΣR with
maximal φ-pressure. Therefore m weights only irreducible components of ΣR which
have maximal φ-pressure (which must be Zc).

In [Lep05] we gave a way to identify the limit measure. For that, we introduced
the notion of isolation rate between two irreducible components (with maximal φ-
pressure).

This isolation rate estimates the better way to join two irreducible components
(and seems related to the Peierls barrier in [GLT10]). In the general case its calcu-
lation is relatively hard. In our case there is a unique way to join two irreducible
components of the dotted system going through iR. Then, every contribution for
any link of that kind is the same (namely it is equal to 1 = 1IR(x)). Therefore, all
the irreducible components have the same isolation rate and all the irreducible com-
ponents of the dotted system ΣR with maximal φ-pressure have positive m-measure.

Remark 5. If we make several holes, i.e., if R is not a single (0, 0)-cylinder, most
of the previous results hold. However the irreducible components with maximal
φ-pressure would not necessarily all get the same isolation rate. This would make
the rest of the proof more difficult. �
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Σi
R

σσ

σσ

iR

Σl
RΣk

R

Σj
R

Figure 2: irreducible components, dynamics and transition costs

3 Convergence for HZ, νZ and µZ

The main result in this section is proposition 3.5 where we prove that HZ and νZ
converge as Z goes to Zc. In Subsection 3.1 we state and prove one technical result
which is the main tool to get the convergencies we mentioned above.

3.1 Approximation of 1
λZ
LZ as Z goes to Zc

In this subsection we study the asymptotic for 1
λZ
LZ when Z goes to the critical

value Zc. In the first subsubsection we show how/why the dotted systems get greater
importance for Z close to Zc. In the second subsubsection, we study the transfer
operator for some relevant irreducible components of ΣR. We also extend the sets of
definition for these operators, and prove that some useful estimates are independent
of Z. In the last subsubsection we give an explicit result for the estimation of the
asymptotic.

3.1.1 Influences of the dotted system when Z goes to Zc

Lemma 3.1. Let us consider any accumulation point µ for the family (µZ) when
Z goes to Zc. Then the set of point which return into R by iterations of σ has zero
µ-measure.

Proof. Let x be in F such that r(x) < +∞. Let us set n = r(x) and K1(x)
def
=

C0,n(x) ∩ F . Then we have gF (K1(x)) = F . Moreover (9) yields

e−Cφ .eSn(φ)(x)−Z.n−β ≤ µZ(K1(x)) ≤ eCφ .eSn(φ)(x)−Z.n−β.
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Therefore, when Z goes to Zc, β goes to +∞, and µ(K1(x)) = 0.
Now the set of points which return into R by iterations of σ is the countable

union of K1(x), when x satisfies r(x) < +∞. As any such set has zero µ-measure,
the union has zero µ-measure. This finishes the proof.

This lemma explains the situation: the closer Z is to Zc, the more LZ gives
greater importance to orbits with long return time. But orbits with long return
time in R look almost like orbits in one of the irreducible component of ΣR. Then,
the closer Z is to Zc the more 1

λZ
LZ behaves like a transfer operator of Σ+

R.

3.1.2 Study of the dotted system and extensions of its thermody-
namic tools

In this subsubsection we define and study the transfer operator on ΣR. We also
extend the domains of definition of the thermodynamic notions.

We denote by Σl
R, l = 1, . . . , P the irreducible components of ΣR with maximal

φ-pressure. For each one we denote by νl the conformal measure for φ. The nor-
malized eigenfunctions for the transfer operator are denoted by Hl, l = 1, . . . , P .
Remember that νl and Hl are in fact defined on the one sided shift Σl+

R .

• Gibbs measures and their extension.
For x in F , with return time n ≤ +∞, we set

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, x1, . . . , xn−1︸ ︷︷ ︸

no iR

, iR, . . . .

The word [x1, . . . , xn−1] is an admissible word for a unique irreducible component
of ΣR. If this component is Σl

R, we then say that x belongs to F l. On F l we can
define the measure νl ◦ σ by

νl ◦ σ(A) = νl(σ(A)), (11)

where we only consider the future of σ(A) to compute νl(σ(A)). This measure gives
positive weight only for subsets of points in F l with infinite return time.

• Eigen-functions and their extensions.
Let us now pick some point y = (yn)n≥0 on the form

y0, . . . , yn−1︸ ︷︷ ︸
admissible for ΣlR

, iR, . . . .

Clearly y does not belong to Σl+
R , and Hl(y) is a priori not defined. However, there

is a canonical way to define it:
Remember that Hl satisfies Hl = limn→+∞

1
n

∑
k e
−kZcLkl (1IΣl+R

) ( see (6) and

note that the topological pressure is Zc), where Ll is the transfer operator in Σl+
R

for the potential φ. But for ξ in Σl+
R , σk(ξ′) = ξ simply means that we add in front

of the one sided infinite word associated to ξ an admissible word, with length k, for
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Σl+
R (and it also has to satisfy some transition rules !). If ξ starts with y0, and if ξ′

is
ξ′0, . . . , ξ

′
k−1, y0, ξ1, . . .

then the point y′ := ξ′0, . . . , ξ
′
k−1, y0, y1, y2, . . . , satisfies σk(y′) = y and it belongs to

the same (0, k)-cylinder than ξ′ (in Σ+). Thus, we can set

Lkl (1IΣl+R
)(y) :=

∑

y′

eSk(φ)(y′),

where the sum is done over all the possibilities for y′, each one associated to one
admissible word of length k in Σl+

R . Then the definition of Hl(y) follows:

Hl(y) = lim
n→+∞

1
n

∑

k

e−kZcLkl (1IΣl+R
)(y).

We let the reader check that this extension of Hl has the same Hölder regularity
than Hl on Σl+

R . For convenience we now denote by Σ̃l+
R the set of points ξ0, ξ1, . . .,

where [ξ0] is an admissible word for Σl+
R . Hence, we have extended the definition of

Hl from Σl+
R to Σ̃l+

R .

Lemma 3.2. The function Hl is positive on Σ̃l+
R .

Proof. Note that we still have Ll(Hl) = eZcHl. Moreover Hl is non-negative on Σ̃l+
R

and positive on Σl+
R (see Result 2 page 7).

Let y be in Σ̃l+
R \Σl+

R . We assume thatHl(y) = 0. Let set y′ := ξ′0, . . . , ξ
′
k−1, y0, y1, y2, . . . ,

such that σk(y′) = y and [ξ′0, . . . , ξ
′
k−1] is admissible for Σl+

R . Then we getHl(y′) = 0.
Doing k → +∞ and considering any accumulation point of the y′’s, we get a point
in Σl+

R where Hl vanishes. This is a contradiction with positivity of Hl in Σl+
R .

Now, let x in F be on the form

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, x1, . . .

and let x′ in F on the form

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, x

′
1, . . . , x

′
n−1︸ ︷︷ ︸

no iR

, iR, x1, x2, . . . .

We have gF (x′) = x. Let us assume that x′1, . . . , x
′
n−1 is an admissible word for Σl+

R .
Following what we have done above, we can define Hl([x′n−1, iR, x1, . . .]). Then, we
set

H̃l(x) =
∑
Hl([x′n−1, iR, x1, . . .]), (12)

where the sum is only done over all the different possible letters x′n−1 in the alphabet
that defines Σl+

R . Namely if x′′ in F is on the form

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, x

′′
1, . . . , x

′′
m−1︸ ︷︷ ︸

no iR

, iR, x1, x2, . . . ,
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and x′′m−1 = x′n−1, only one term Hl([x′n−1, iR, x1, . . .]) = Hl([x′′m−1, iR, x1, . . .])
appears in the sum.

Remark 6. From Lemma 3.2 we get H̃l > 0. �

•Transfer operators and their extension.
As we have just explained, the function Hl can be defined on a larger set than

Σl+
R The main reason for this, is that the transfer operator Ll itself can be defined

on continuous function from Σ̃l+
R to R. For any point y in Σ̃l+

R , we only consider
preimages in Σ̃l+

R such that the added word (to the left of y) is admissible for Σl+
R

(just as above).

Lemma 3.3. The spectral radius of Ll defined on the set Cα(Σ̃l+
R ,R) of α-Hölder

function from Σ̃l+
R to R is the same than the spectral radius of Ll on Cα(Σl+

R ,R).
Moreover, we get

Lp(T )(x) = ep.Zc
∫
T dνlHl(x) + ep(Zc−ε)Rpl (T )(x), (13)

where ||Rpl (T )||∞ ≤ Cl||T ||α, ε and Cl are positive real numbers (ε is the spectral
gap of the operator).

Proof. We just give the ideas of the proof. Indeed, these ideas are the same than in
the proof of Proposition 3.5 (see below) and we believe it seems better to present a
complete proof there.

The main ingredient to get the spectral decomposition is to use the Ionescu-
Tulcea and Marinescu theorem. There, the key point is to get the Dœblin-Fortet
inequality (see Result 5 page 8). We claim, and let the reader check that this
inequality effectively holds for Ll on Cα(Σ̃l+

R ,R) (with the same proof than for Ll
on Cα(Σl+

R ,R)).
Now, the second point in the proof is to check that the spectral radius is also

the eigenvalue for the adjoint operator (acting on measures). But the unique eigen-
measure is νl, considering the adjoint operator either acting on measures defined on
Σ̃l+
R or on Σl+

R . This shows that the two operators have the same spectral radius,
eZc , and that the decomposition holds for Hölder continuous functions.

3.1.3 Asymptotic for 1
λZ
LZ

Proposition 3.4. With the previous notations, there exists a positive ε such that
for every T : F → R α-Hölder continuous and for every x in F ,

1
λZ
LZ(T )(x) =

e−β

1− eZc−Z
P∑

l=1

(∫

F l
T (ξ)eφ(ξ)−Z dνl ◦ σ(ξ)

)
× H̃l(x)

+
e−β

1− eZc−Z−ε .O(||T ||α), (14)
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Proof. Let us pick some x in F and some T . We have

1
λZ
LZ(T )(x) = e−β

∑

y∈Pre1(x)

eΦ(y)−Z.r(y)T (y).

For such y in Pre1(x) we set

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, y1, . . . , yn−1︸ ︷︷ ︸

no iR

, iR, x1, x2, . . . .

We focus our attention on such y such that y1, . . . , yn−1 is admissible for some
Σl+
R ; during the computation, it will appear why other points give a negligible

contribution.
In the rest of the proof we say that such a preimage visits the irreducible com-

ponent Σl
R.

Now, remember that φ does only depend on the future. Then, considering all
the preimages by gF of the point x which visit Σl

R, we pack away the preimages in
function of the first letter y1 and the last letter before iR, yr(y)−1. The sum over
these preimages satisfies

∑

y visiting

ΣlR

eΦ(y)−Zr(y)T (y) =
∑

possible
y1

∑

possible
x−1

eφ(y)T (y)eSr(y)−2(φ)(σ(y))eφ([x−1,iR,x1,...])e−Zr(y)

=
∑

possible
x−1

+∞∑

p=0

e−(p+1)ZLpl (e
φ◦σ−1T ◦ σ−1)([x−1, iR, x1, . . .]), (15)

where σ−1(ξ) means the concatenation in Σ̃l+
R , JiR, ξK. Now (13) yields

Lp(eφ◦σ
−1T ◦ σ−1)([x−1, iR, x1, . . .]) = ep.Zc

(∫
eφ◦σ

−1T ◦ σ−1 dνl
)
×Hl([x−1, iR, x1, . . .])

+ep(Zc−ε)Rpl (eφ◦σ
−1T ◦ σ−1)([x−1, iR, x1, . . .]). (16)

Therefore, doing the sum over all the integers p and all the possible x−1 in (15),
(11), (12) and (16) yield

∑

y visiting

ΣlR

eΦ(y)−Zr(y)T (y) =
1

1− eZ−Zc
(∫

F l
eφ−ZT dνl ◦ σ

)
× H̃l(x)

+
1

1− eZ−Zc−ε e
||φ||∞−ZO(||T ||α). (17)

Here appears why preimages visiting other components than the Σl
R give a negligible

contribution. These components have a φ-pressure strictly smaller than Zc. Hence
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the spectral radius for their transfer operators are strictly smaller than eZc . Doing
the same computation than above, the first term in the right hand size of (17) should

be replaced by
1

1− eZ−Zc−ε ,where eZc−ε is the spectral radius of the operator for

the visited component.
Note that a key point here is that ΣR has finitely many irreducible components:

this allows to find a uniform positive ε.
This finishes the proof of the proposition.

3.2 Convergencies

In this subsection, we are going to use Proposition 3.4 to prove the expected con-
vergencies.

Proposition 3.5. The function HZ , the measure νZ and the measure µZ converge
as Z goes to Zc

Proof. The main idea is to prove that the quantities we are studying have a unique
accumulation point when Z goes to Zc, or equivalently, as β goes to +∞. During

the proof the quantity
e−β

1− eZ−Zc and its possible accumulation points are going to

play a key role.
• First step: The HZ ’s are equi-continuous.
Remember that HZ is defined by

HZ = lim
n→+∞

1
n

∑

k<n

e−kβLkZ(1IF ) = lim
n→+∞

1
n

∑

n0≤k<n
e−kβLkZ(1IF ).

The equi-continuity shall follow from the Dœblin-Fortet inequality.
Let T be any Hölder function on F . Result 5 (see page 8)says that we get a

bound of the form

∀ n ≥ n0, ||e−nβLnZ(T )||α ≤ an.||T ||α + b.||T ||∞.

The important point is that Cφ, n0, a and b do not depend on Z but only on φ.
Indeed, we already saw that Cφ is a bound for the variation of Sn(φ) on all the

(0, n)-cylinders. The integer n0 and the constants a and b are obtained computing
the α-norm of e−nβLnZ(T ). We get:

∣∣∣e−nβLnZ(T )(x)− e−nβLnZ(T )(y)
∣∣∣ ≤ ||T ||α

enβ
dα(x, y)

2n
LnZ(1IF )(x)

+
||T ||∞
enβ

∣∣∣eCφ
dα(x,y)

2n − 1
∣∣∣LnZ(1IF )(x).

Then (9) yields

||e−nβLZ(T )||α ≤ 2−neCφ ||T ||α + C.Cφ2−n||T ||∞.
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We pick n0 large enough that a := 2−n0eCφ < 1. Clearly neither a, nor n0 depend
on Z. Then we get b using the standard argument of the euclidean division of n by
n0 when we compute ||e−nβLZ(T )||α for large n.

Therefore, using the Dœblin-Fortet inequalities, the fact that the constants do
not depend on Z and the definition of HZ we get that all the functions HZ are
equi-continuous.

Using the Ascoli theorem, we can get some convergent subsequence from any
subfamily. Moreover, the set of function {HZ , Z ≥ Zc} is bounded from above for
the α-norm (by b). Then, even if the convergence occurs for the ∞-norm, the limit
is α-Hölder with α-norm lower than b.

• Second step:
e−β

1− eZ−Zc and νZ converge. We first pick a subfamily of Z such

that
e−β

1− eZc−S converges to A when Z goes to Zc and Z belongs to the subfamily.

For convenience we write limZ↓Zc , thinking limit for the selected subfamily.
Again, {νZ} is a pre-compact family, and we can extract some convergent sub-

family from the previous subfamily. Let us consider some accumulation point for
νZ , respecting the previous convergence.

The main idea to prove the uniqueness of ν is to prove that
∫
T dν is uniquely

determined for any Hölder T .
Let us pick some T .
By Proposition 3.4 we have for every x,

1
λZ
LZ(T )(x) =

e−β

1− eZc−Z
P∑

l=1

(∫

F l
T eφ−Z dνl ◦ σ

)
× H̃l(x)

+
e−β

1− eZc−Z−ε .O(||T ||α), (18)

Note that lim
Z↓Zc

e−β

1− eZc−Z−ε = 0 because ε is positive and β goes to +∞.

In the other hand we get

νZ(T ) =
1
λZ
L∗Z(νZ)(T ) =

∫
1
λZ
LZ(T ) dνZ .

Now, (18) yields
∫
T dν = A.

∑

l

(∫

F l
T eφ−Zc dνl ◦ σ

)∫
H̃l dν. (19)

We now use (19) for T = 1IF ; remember that for every Z we have νZ(F ) = 1.
Therefore we get

1 = A
∑

l

(∫

F l
eφ−Zc dνl ◦ σ

)∫
H̃l dν. (20)

Note that all the numbers
∫
H̃l dν are positive (follows from Remark 6). Therefore

(20) implies that A belongs to ]0,+∞[.
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Using (19) with T = H̃j we get

1
A

∫
H̃j dν =

∑

l

(∫

F l
H̃jeφ−Zc dνl ◦ σ

)∫
H̃l dν. (21)

This means that the vector




∫
H̃1 dν

...∫
H̃P dν




is a positive eigenvector for the matrix

M with entries
(∫

F l
H̃jeφ−Zc dνl ◦ σ

)

j,l

. This matrix has all its entries positive,

and we can use the Perron-Frobenius theorem. The matrix admits a unique (up
to a multiplicative factor) eigenvector with all positive entries and the associated

eigenvalue is the spectral radius of the matrix M. It equals
1
A .

Note that the considered matrix does not depend on the accumulations points we

considered. This proves that A is uniquely determined, hence
e−β

1− eZ−Zc converges

as Z goes to Zc. Now, all the
∫
H̃j dν are uniquely determined up to a multiplicative

constant, and (20) fixes their respective value. They are thus uniquely determined,
and(19) implies that ν is uniquely determined; hence νZ converges as Z goes to Zc.
• Step three: HZ converges. Our strategy is (as before) to prove that the family

{HZ} admits a unique accumulation point, hence its convergence. Let us consider
some accumulation point H for HZ (for the norm of uniform convergence).

Then
H = lim

Z↓Zc
HZ = lim

Z↓Zc

1
λZ
LZ(HZ),

and (18) yields

H = A.
P∑

l=1

(∫

F l
Heφ−Zc dνl ◦ σ

)
H̃l. (22)

This yields for every x in F

H(x) = A.
∑

l

(∫

F l
Heφ−Zc dνl ◦ σ

)
H̃l(x)

= A2
∑

j,l

(∫

F j
Heφ−Zc dνj ◦ σ

)(∫

F l
H̃jeφ−Zc dνl ◦ σ

)
H̃l(x). (23)

where we obtain the second equation by replacing H in the term
∫
Heφ−Zc dνl ◦ σ

of the first equation by the right hand side term of (22) .
Note that we can iterate this process, inserting (22) in (23) and so on. Therefore

we get a family of equation on the form
(
~a|An~b(x)

)
=
H(x)
A , n ≥ 0, x ∈ F
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where A is the matrix AM with positive entries
(
A
∫

F l
H̃jeφ−Zc dνl ◦ σ

)

jl

, and

~a =
(∫

F 1

Heφ−Zc dν1 ◦ σ, . . . ,
∫

FP
Heφ−Zc dνP ◦ σ

)
,

~b(x) =



H̃1(x)

...
H̃P (x)


 .

The matrix A∗ has positive entries and spectral radius 1. Using Perron-Frobenius
theorem, we get that ~a.An converges as n goes to +∞ to (~a|~u), where ~u is the unique
normalized vector with positive entries such that ~u.A = ~u. This proves that H is
uniquely determined. Therefore HZ converges.

As the convergence occurs uniformly, we directly get convergence for µZ ; indeed
dµZ = HZ dνZ . This finishes the proof of the proposition.

Remark 7. Note that H is a positive function on F . �

Relations (19) and (20) yield an important result for the rest of the proof:

Proposition 3.6. There exist P positive constants al, l = 1, . . . , P such that for
every l and for every x in F l,

dν

dνl ◦ σ = al.e
φ(x)−Zc .

4 Convergence for µ̂Z and asymptotic of the

limit measure

In the section, we prove that µ̂Z converges as Z goes to Zc. We also prove that the
limit µ̂ satisfies the required properties. To prove convergence for µ̂Z it is equivalent
to prove convergence for µ̂Z(C−n,m(x)) for any non-negative integers n, m, and for
any x in R. Using the disintegration of the measure along the stable leaves, we get

µ̂Z(C−n,m(x)) =
∫
µ̂sZ,y(C−n,0(x))1IC0,m(x)(y) dµZ(y), (24)

where µ̂sZ,y is the disintegrated measure on the fiber C0,+∞(y). We already have
the convergence for µZ ; we only need the uniform convergence for the map y 7→
µ̂sZ,y(C−n,0(x)). This will follow from the next two lemmas.

Let us pick some y. We use proposition 7.1 in [Lep00] to get

µ̂sZ,y(C−n,0(x)) =
∑

y′∈Pre1(y)

µ̂sZ,y(g(ηs(y′)))1IC−n,0(x)(g(y′))

=
∑

y′∈g−1(C−n,0(x))

HZ(y′)
HZ(y)

eΦ(y′)−Z.r(y′)−β. (25)

Remember that g is the map σr(.)(.), and thus, the last sum is taken over the y′ in
Pre1(y) such that g(y′) ∈ C−n,0(x).
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Lemma 4.1. If there exists y′ in Pre1(y) such that r(y′) = n, then µ̂sZ,ξ(C−n,0(x))
goes uniformly (in ξ) to 0 as Z goes to Zc.

Proof. Remember we defined the 1-sets in the proof of Lemma 3.1. With our nota-
tions, K1(y′) = F ∩ C0,n(y′). Moreover,

g(C0,n(y′)) = σn(C0,n(y′)) = C−n,0(x).

Therefore, (25) yields µ̂sZ,ξ(C−n,0(x)) =
HZ(ξ′)
HZ(ξ)

eΦ(ξ′)−Zcn−β, where ξ′ is the unique

element in Pre1(ξ) ∩K1(y′). Now, when Z goes to Zc, β goes to +∞, n is fixed,
and thus µ̂sZ,ξ(C−n,0(x)) goes uniformly to 0.

Let us set C−n,0(x) = [x−n, x−n+1, . . . , x−1, iR]. Lemma 4.1 implies that if one
x−j = iR with 0 < j ≤ n, then µ̂sZ,ξ(C−n,0(x)) goes uniformly (in ξ) to 0 as Z goes
to Zc. We now consider the case where no x−j equals iR (except x0). Note that
[x−n, . . . , x−1] is an admissible word for an unique irreducible component of ΣR

Lemma 4.2. There exists some positive ε such that, if [x−n, . . . , x−1] is an admis-
sible word for Σl

R, then

µ̂sZ,y(C−n,0(x)) =
1

HZ(y)
eSn(φ)(σ−n(y))−nZ

(
O(

e−β

1− eZc−Z−ε )+
(∫

F l
HZe

φ−Zdνl ◦ σ
)
Hl(σ−n(y))

e−β

1− eZc−Z
)
, (26)

where σ−n(y) denotes [x−n, x−n+1, . . . , x−1, iR, y1, y2, . . .].
If [x−n, . . . , x−1] is not an admissible word for any Σl

R, then

µ̂sZ,y(C−n,0(x)) = O(
e−β

1− eZc−Z−ε )

Proof. We copy the proof of Proposition 3.4. We first assume that [x−n, . . . , x−1] is
an admissible word for Σl

R. The other case will follow from the same computation.
Equation (25) yields

∑

y′∈g−1(C−n,0(x))

HZ(y′)
HZ(y)

eΦ(y′)−Z.r(y′)−β =
1

HZ(y)
eSn(φ)(σ−n(y))−nZ ×

∑

y′∈g−1(C−n,0(x))

HZ(y′)eSr(y′)−n(y′)−(r(′y)−n)Z

Again,

∑

y′∈g−1(C−n,0(x))

HZ(y′)eSr(y′)−n(y′)−(r(′y)−n)Z =
+∞∑

p=0

Lpl (HZ ◦ σ−1eφ◦σ
−1−Z)(σ−n(y)),

where σ−1([ξ0, ξ1, . . .]) means [iR, ξ0, ξ1, . . .]. We use (13) and conclude as above.
Note that the constant in O only depends on e||φ||∞ and ||HZ ||α and ||φ||α.
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Now, if [x−n, . . . , x−1] is not an admissible word for any Σl
R, the same compu-

tation holds, except that the pressure of the component is strictly smaller than Zc.
It can thus be written under the form Zc − ε for some positive ε.

As there are finitely many irreducible components, we can find some uniform ε,
independent of the components.

Now, note that HZ converges uniformly as Z goes to Zc. Moreover e−β

1−eZc−Z
converges to A. Therefore, Lemma 4.1 and Lemma 4.2 yield that µ̂sZ,y(C−n,0(x))
converges uniformly in y as Z goes to Zc. This finishes the proof of the convergence
of µ̂Z . Moreover, Lemma 3.1 and Lemma 4.1 prove that the limit measure µ̂ only
gives positive weight to the set of points whose orbit intersects R only once. This
set is totally dissipative with respect to σ.

Remark 8. Note that (24) yields that πF µ̂ = µ := limZ µZ .�

Remark 9. The measure µ̂Z is g-invariant, but g is not a continuous map. There-
fore, there are no reason why the limit measure should be g-invariant. Nevertheless,
we can consider it is the case, if we consider that for µ̂-almost every point the return
time (by iterations of σ or σ−1) is infinite. �

We set µ′
def
=
∑

k≥0

σk∗ µ̂. It is a σ-finite measure and we now want to study its

asymptotic with respect to σ.

Definition 4.3. Let x be in suppµ′. There exists a unique integer n such that
σn(x) ∈ R. Then, there exists a unique l such that for every k ≥ 0, the cylinder
Cn+1,n+k+1(x) defines an admissible word for Σl

R. We say that Σl
R (eventually)

catches x.

Proposition 4.4. Let f be a continuous functions in Σ. Then for µ′ almost every
x,

lim
n→+∞

1
n

n−1∑

j=0

f ◦ σj(x) =
∫
f dml(x),

where ml(x) is equilibrium state with respect to φ of the irreducible component of
Σl(x)
R which catches x.

Proof. Let us pick some irreducible component of ΣR with maximal φ-pressure, Σl
R;

ml is its equilibrium state. For ml-almost every z in Σl
R,

lim
n→+∞

1
n
Sn(f)(z) =

∫
f dml.

As f is continuous, if the limit occurs for some z, it also holds for every z′ in its
stable leaf. Moreover if the limit holds for z, it also holds for every σn(z).

Now, remember that ml is defined on Σl
R, and its projection onto Σl+

R is the
measure defined by Hl.dνl(see Subsection 2.1). Moreover Hl is bounded from below
away to 0 and from above.



5. Proof of Theorem 2 and Corollary 3 25

Therefore, for νl-almost every z in Σl
R

+, and for every z′ in W s(z),

lim
n→+∞

1
n
Sn(f)(z′) =

∫
f dml.

We denote by Ωl this set of full νl-measure in ΣR
l+.

Now, Remark 8 says that the projection of µ̂ onto F in R is µ, the limit measure
for µZ . Remember that dµZ = HZdνZ and HZ uniformly converges to H and νZ
converges to ν. Moreover, HZ(ξ) ∈ [e−Cφ , eCφ ] for every ξ in F , which means that
H is bounded from below away to 0 and from above. Hence, the projection of µ̂
onto F is equivalent to ν.

For points which are caught by Σl
R, Proposition 3.6 yields that ν is equivalent

to νl ◦ σ−1. Therefore, for ν-almost every z in F l, σ(z) belongs to W s(Ωl). This
means that for ν-a.e. point in F caught by Σl

R, the limit holds. Hence this also
holds for µ̂-a.e. point in R caught by Σl

R. This finishes the proof.

5 Proof of Theorem 2 and Corollary 3

In this section, we construct a φ-cstm which is related to m. We then prove that
this system results from the disintegration of some σ-finite σ-invariant measure.
Finally we prove that changing our choice for R, we have infinitely many different
such measures.

5.1 Construction of the φ-cstm

Following [BM77], the mixing property in Σ proves that it is sufficient to construct
one measure νF on F .

We want to prove that the measure we construct satisfies the property of being
φ-conformal, i.e., some strict property on the derivative of Radon-Nikodym for
holonomies. It turns out that this property will be satisfied if we asked for another
property, in relation with σ and not the holonomy (see Remark 2).

We decompose F in a disjoint union of sets Fn, 0 ≤ n ≤ ∞. A point x in F
belongs to Fn if and only if it returns n times into R by iterations of σ. Clearly
F∞ is gF -invariant. Note that x belongs to Fn, if and only if gnF (x) belongs to
F0. Therefore, if x belongs to F∞, no points in its stable leaf W s(x) can be in⋃
n<+∞ Fn.

On F0 we put the measure ν
def
= lim

Z→Zc
νZ . Note that by Lemma 3.1 µ(F0) = 1,

and we have seen that µ and ν are two equivalent probabilities. Points in F0

are points whose forward orbit never returns into R, hence are points caught by
some irreducible component. Therefore, ν-almost very point belongs to some F l,
l = 1, . . . , P . Due to the density of the leaves, the pair (F, ν) is going to fix all
the system of transverse measure. We however define νF everywhere on F and will
check later that this is coherent with the φ-conformal property.

We decompose Fn in disjoints Kn-sets, defined by the relation

gnF (Kn(x)) = πF ◦ σr
n(x)(Kn(x)) = F.



5. Proof of Theorem 2 and Corollary 3 26

Note that the map πF defines a bijection from σr
n(x)(Kn(x)) onto F . We push ν

on σr
n(x)(Kn(x)), following the φ-conformal rule. We then define the measure νF

on Kn(x) following the rule

dνF
dσ−rn(x)νF

(x) = eSrn(x)(φ)(x)−rn(x).Zc . (27)

By construction, this measure is infinite because νF (F1) = LZc(1I) = +∞.
We now have to check that this definition of νF allows us to construct a unique

φ-conformal system of transversal measures on the local unstable leaves in Σ.
Let A be any set in Fn. We assume it is included in a unique Kn-set, say Kn(x).

For any other Kn-set, Kn(y), we can define the adjoint set A′, in the following way:
Take the gn-images of Kn(x) and Kn(y), project on gn(Kn(y)) the set gn(A)

along the local stable leaves, and then take the preimage by gn of that set in Kn(y).
Due to the definition of νF on the Kn-sets, the derivative of Radon-Nikodym of

the image by that holonomy of νF |Kn(x) with respect to νF |Kn(y) is eω.
Let us now take two W s-conjugated sets A and A′ in different Fn’s. By W s-

conjugated sets we means sets A and A′ such that there exists some bi-measurable
holonomy hs from one to the other. Iterating by the map σ, we can always assume
that one (namely A) is taken in Fn, and A′ in F0. We can also assume that A′ is
included in a unique F l and that A is included in a unique Kn-set (otherwise we
split each set in disjoints subsets with these properties).

Proposition 3.6 means that in F0∩A′ the measure ν = νF is the measure al.νl◦σ.
Each νl is a conformal measure and satisfies in Σl+

R

dνl

dσ−1νl
(x) = eφ(x)−Zc . (28)

Note that this relation is equivalent to the one satisfied by νl ◦ σ in F l, stated
in Proposition 3.6 and to (27). We can thus use the cocycle relation. Let p be such
that gn(A) = σp(A). The W s-conjugacy between A and A′ is then equivalent to
the W s-conjugacy between σp(A) and σp(A′). Moreover σp(A) belongs to R, and
the future of σp(A) belongs to Σl+

R .
Then, Proposition 3.6, equality (28) and the definition of νF on Fn imply that the

derivative of Radon-Nikodym between νF and hs∗νF for any point x in A is eω. This
thus proves that the φ-conformal property holds for this choice of W s-conjugated
sets A and A′ in F . Following [BM77] we can extend νF using the φ-conformal
property to get some φ-cstm in Σ.

Remark 10. Note that for every local unstable leaf in Σl
R, the restriction of the

measure defined by the system above is equivalent to νl. �

We also want to point-out that the system of measures we have just defined
satisfies the property:

dµx
dσ−1µσ(x)

(x) = eφ(x)−Zc . (29)

This follows from the definition of νF in F and of ν in F0.
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5.2 Integration of the system of measures

Lemma 5.1. The measure µ̂ has a product structure: µ̂ ≡ ν ⊗ νs, for some proba-
bility measure νs. The measure νs only weights points in R which never return into
R by iterations of σ−1.

Proof. First, Lemma 4.1 proves that µ̂ gives positive weight only to sets of points
in R whose backward orbit never intersects R again. Let us pick such a point
x. Therefore its past [. . . , x−2, x−1] is an admissible word for a unique irreducible
component of ΣR. Lemma 4.2 yields that µ̂ gives positive weight only to sets of
points x such that [. . . , x−2, x−1] is an admissible word for one of the Σl

R. Let us
assume in addition that this holds for x. Equalities (26) and (24) yield

µ̂(C−n,m(x)) =
∫
H.eφ−Z dνl ◦ σ ×

∫
Hl(σ−n(y))eSn(φ)(σ−n(y))−nZc1IC0,m(x)(πF (y))1IC−n,0(x)(y) dν(πF (y)),

This gives

µ̂(C−n,m(x))
µ̂(C−n,0(x))

=

∫
Hl(σ−n(y))eSn(φ)(σ−n(y))1IC−n,0(x)(y)1IC0,m(x)(πF (y)) dν(πF (y))∫

Hl(σ−n(y))eSn(φ)(σ−n(y))1IC−n,0(x)(y) dν(πF (y))
.

(30)
We know (see [Roh62]) that for µ̂-a.e. point x, the limit in the left hand side of
(30) exists as n goes to +∞, and equals µ̂ux(C0,m(x)). We also note that the right
hand term in (30) belongs to [ν(C0,m(x))e−4Cφ , ν(C0,m(x))e4Cφ ]. Indeed, each Hl(ξ)
belongs to [e−Cφ , eCφ ], and each term eSn(φ)(σ−n(y)) can be replaced, up to e±Cφ by
eSn(φ)(σ−n(ξ)) for a fixed ξ in the same cylinder.

This means that for m and for every x,

e−4Cφ ≤ µ̂ux(C0,m(x))
ν(C0,m(x))

≤ e4Cφ .

Hence, the conditional measure µ̂ux is equivalent to ν. This effectively proves that
µ̂-almost everywhere, the conditional measures are equivalent (up to the stable
holonomy which exactly is the horocycle flow). This proves that µ̂ has a product
structure.

We can thus set µ̂ ≡ ν ⊗ νs, for some probability measure νs. Note that νs

only weights points in R which never return into R by iterations of σ−1 because µ̂
does.

Let us set
τ̃
def
= νF ⊗ νs.

Then τ̃ only weights points in R which never return into R by iterations of σ−1 and
which return only finitely many times in R (possibly 0) by iterations of σ. This set
is totally dissipative. Let us set

τ
def
=
∑

k∈Z
τ̃ ◦ σk,
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which is a σ-finite and σ-invariant measure. By construction it integrates the φ-
conformal system of measures defined by νF in Σ. It is non ergodic, because it
weights points whose orbits intersects R only finitely many times; this set can be
decomposed in σ-invariant disjoints sets, defined as the set of points whose orbit
intersect R exactly n-times, n describing N∗. All these sets have positive measure.

We now check that the measure τ is σ-finite. For that we only need to check
that τ̃ is σ-finite. We can decompose the support of τ̃ in sets of points in π−1

F (Fn).
Moreover, each π−1

F (Fn) can be decomposed in the disjoint and countable union of
π−1
F (Kn)-sets. Each such set has finite τ̃ -measure because its image by gn is into
π−1
F (F0). This finishes the construction and the proof of Theorem 2.

5.3 Proof of corollary 3: counting these measures

There are only finitely vertices’s in Σ, but it is possible to use a higher block rep-
resentation (see [LM95]) to increase this number. Now, using the higher block
representation, we can chose R′ ⊂ R (and R′ 6= R). Obviously, points which only
return finitely many times in R by iterations of σ also only return finitely many
times in R′. However the new φ-cstm, {µ′Wu

loc
}, satisfies

dµ′Wu
loc(x)

dσ−1µ′Wu
loc(σ(x))

(x) = eφ(x)−Z′c , (31)

where Z ′C is the pressure of the dotted system with hole R′. Note that in Σ, R′ is
a cylinder with some length n. Making this length n go to +∞, the pressure of the
dotted system has to increase to the pressure of Σ (but never equals it). Therefore
it attempts infinitely many different values. Hence (29) and (31) prove that all these
systems are different, thus all their integrated measures are different. It effectively
furnishes infinitely many different measures as announced. Corollary 3 is proved.
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