A generative machine learning surrogate model of plasma turbulence
Résumé
State-of-the-art techniques in generative artificial intelligence are employed for the first time to construct a surrogate model for plasma turbulence that enables long time transport simulations. The proposed GAIT (Generative Artificial Intelligence Turbulence) model is based on the coupling of a convolutional variational auto-encoder, that encodes precomputed turbulence data into a reduce latent space, and a deep neural network and decoder that generate new turbulence states 400 times faster than the direct numerical integration. The model is applied to the Hasegawa-Wakatani (HW) plasma turbulence model, that is closely related to the quasigeostrophic model used in geophysical fluid dynamics. Very good agreement is found between the GAIT and the HW models in the spatio-temporal Fourier and Proper Orthogonal Decomposition spectra as well as in the flow topology characterized by the Okubo-Weiss decomposition. Agreement is also found in the probability distribution function of particle displacements and the effective turbulent diffusivity.
Origine | Fichiers produits par l'(les) auteur(s) |
---|